Nuprl Lemma : qinv-negative

[v:ℚ]. (1/v) < supposing v < 0


Proof




Definitions occuring in Statement :  qless: r < s qdiv: (r/s) rationals: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q prop: all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q implies:  Q guard: {T} false: False qdiv: (r/s) true: True squash: T qless: r < s grp_lt: a < b set_lt: a <b assert: b ifthenelse: if then else fi  set_blt: a <b b band: p ∧b q infix_ap: y set_le: b pi2: snd(t) oset_of_ocmon: g↓oset dset_of_mon: g↓set grp_le: b pi1: fst(t) qadd_grp: <ℚ+> q_le: q_le(r;s) callbyvalueall: callbyvalueall evalall: evalall(t) bor: p ∨bq qpositive: qpositive(r) qsub: s qadd: s qmul: s btrue: tt lt_int: i <j bnot: ¬bb bfalse: ff qeq: qeq(r;s) eq_int: (i =z j) or: P ∨ Q
Lemmas referenced :  qinv_inv_q qmul_zero_qrng qless-minus qless_transitivity qmul_inv qmul_com iff_weakening_equal qmul_comm_qrng qmul_one_qrng qmul_wf true_wf squash_wf qinv_wf qless_wf qless_irreflexivity qle_weakening_eq_qorder qless_transitivity_2_qorder qless_witness qdiv_wf qmul-positive rationals_wf equal_wf not_wf int-subtype-rationals qeq_wf2 assert_wf assert-qeq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis addLevel sqequalHypSubstitution impliesFunctionality lemma_by_obid isectElimination thin hypothesisEquality natural_numberEquality applyEquality because_Cache sqequalRule productElimination independent_isectElimination dependent_functionElimination independent_functionElimination lambdaFormation equalitySymmetry voidElimination isect_memberEquality equalityTransitivity lambdaEquality imageElimination imageMemberEquality baseClosed universeEquality unionElimination minusEquality

Latex:
\mforall{}[v:\mBbbQ{}].  (1/v)  <  0  supposing  v  <  0



Date html generated: 2016_05_15-PM-11_04_07
Last ObjectModification: 2016_01_16-PM-09_28_53

Theory : rationals


Home Index