Nuprl Lemma : qless-minus

[a,b:ℚ].  uiff(a < b;-(b) < -(a))


Proof




Definitions occuring in Statement :  qless: r < s qmul: s rationals: uiff: uiff(P;Q) uall: [x:A]. B[x] minus: -n natural_number: $n
Definitions unfolded in proof :  prop: implies:  Q and: P ∧ Q uiff: uiff(P;Q) subtype_rel: A ⊆B has-valueall: has-valueall(a) has-value: (a)↓ callbyvalueall: callbyvalueall uimplies: supposing a q_le: q_le(r;s) infix_ap: y pi1: fst(t) grp_le: b qadd_grp: <ℚ+> pi2: snd(t) set_le: b set_blt: a <b b dset_of_mon: g↓set set_lt: a <b oset_of_ocmon: g↓oset grp_lt: a < b qless: r < s member: t ∈ T uall: [x:A]. B[x] qsub: s all: x:A. B[x] rev_implies:  Q iff: ⇐⇒ Q guard: {T} squash: T true: True or: P ∨ Q false: False not: ¬A sq_stable: SqStable(P)
Lemmas referenced :  qless_wf int-subtype-rationals qless_witness qmul_wf evalall-reduce rationals-valueall-type rationals_wf valueall-type-has-valueall qadd_comm_q true_wf squash_wf assert_witness assert_of_bnot assert-qeq assert-qpositive assert_of_bor assert_of_band iff_weakening_uiff iff_transitivity bnot_wf qeq_wf2 qsub_wf qpositive_wf bor_wf band_wf assert_wf uiff_wf qinv_inv_q iff_weakening_equal qadd_com not_wf equal_wf qadd_wf or_wf decidable__equal_rationals decidable__qless decidable__or sq_stable_from_decidable istype-universe subtype_rel_self
Rules used in proof :  equalitySymmetry equalityTransitivity independent_functionElimination isect_memberEquality independent_pairEquality productElimination applyEquality natural_numberEquality minusEquality because_Cache callbyvalueReduce hypothesisEquality independent_isectElimination hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution levelHypothesis impliesFunctionality orFunctionality dependent_functionElimination addLevel universeEquality cumulativity baseClosed imageMemberEquality imageElimination lambdaEquality productEquality voidElimination lambdaFormation independent_pairFormation applyLambdaEquality hyp_replacement inrFormation inlFormation unionElimination lambdaEquality_alt universeIsType instantiate

Latex:
\mforall{}[a,b:\mBbbQ{}].    uiff(a  <  b;-(b)  <  -(a))



Date html generated: 2020_05_20-AM-09_16_31
Last ObjectModification: 2020_02_25-PM-00_11_59

Theory : rationals


Home Index