Nuprl Lemma : qless-minus
∀[a,b:ℚ].  uiff(a < b;-(b) < -(a))
Proof
Definitions occuring in Statement : 
qless: r < s
, 
qmul: r * s
, 
rationals: ℚ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
has-valueall: has-valueall(a)
, 
has-value: (a)↓
, 
callbyvalueall: callbyvalueall, 
uimplies: b supposing a
, 
q_le: q_le(r;s)
, 
infix_ap: x f y
, 
pi1: fst(t)
, 
grp_le: ≤b
, 
qadd_grp: <ℚ+>
, 
pi2: snd(t)
, 
set_le: ≤b
, 
set_blt: a <b b
, 
dset_of_mon: g↓set
, 
set_lt: a <p b
, 
oset_of_ocmon: g↓oset
, 
grp_lt: a < b
, 
qless: r < s
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
qsub: r - s
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
squash: ↓T
, 
true: True
, 
or: P ∨ Q
, 
false: False
, 
not: ¬A
, 
sq_stable: SqStable(P)
Lemmas referenced : 
qless_wf, 
int-subtype-rationals, 
qless_witness, 
qmul_wf, 
evalall-reduce, 
rationals-valueall-type, 
rationals_wf, 
valueall-type-has-valueall, 
qadd_comm_q, 
true_wf, 
squash_wf, 
assert_witness, 
assert_of_bnot, 
assert-qeq, 
assert-qpositive, 
assert_of_bor, 
assert_of_band, 
iff_weakening_uiff, 
iff_transitivity, 
bnot_wf, 
qeq_wf2, 
qsub_wf, 
qpositive_wf, 
bor_wf, 
band_wf, 
assert_wf, 
uiff_wf, 
qinv_inv_q, 
iff_weakening_equal, 
qadd_com, 
not_wf, 
equal_wf, 
qadd_wf, 
or_wf, 
decidable__equal_rationals, 
decidable__qless, 
decidable__or, 
sq_stable_from_decidable, 
istype-universe, 
subtype_rel_self
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
independent_functionElimination, 
isect_memberEquality, 
independent_pairEquality, 
productElimination, 
applyEquality, 
natural_numberEquality, 
minusEquality, 
because_Cache, 
callbyvalueReduce, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
levelHypothesis, 
impliesFunctionality, 
orFunctionality, 
dependent_functionElimination, 
addLevel, 
universeEquality, 
cumulativity, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
lambdaEquality, 
productEquality, 
voidElimination, 
lambdaFormation, 
independent_pairFormation, 
applyLambdaEquality, 
hyp_replacement, 
inrFormation, 
inlFormation, 
unionElimination, 
lambdaEquality_alt, 
universeIsType, 
instantiate
Latex:
\mforall{}[a,b:\mBbbQ{}].    uiff(a  <  b;-(b)  <  -(a))
Date html generated:
2020_05_20-AM-09_16_31
Last ObjectModification:
2020_02_25-PM-00_11_59
Theory : rationals
Home
Index