Step
*
1
of Lemma
qinv_wf
1. r : ℚ
2. ¬↑qeq(r;0)
⊢ 1/r ∈ ℚ
BY
{ TACTIC:TACTIC:(TACTIC:(newQuotD 1 THEN Try ((InstLemma `qeq-functionality` [⌜a⌝;⌜b⌝;⌜0⌝]⋅ THENA Auto)))
THEN Try (Unfold `member` 0)
THEN EqTypeCDRational
THEN Auto
THEN Try (BLemma `qeq_refl`)
THEN Try ((BLemma `qinv-wf` THEN Auto))) }
1
.....antecedent.....
1. istype(ℤ ⋃ (ℤ × ℤ-o))
2. ∀r1,s:ℤ ⋃ (ℤ × ℤ-o). istype(qeq(r1;s) = tt)
3. ∀r1:ℤ ⋃ (ℤ × ℤ-o). qeq(r1;r1) = tt
4. a : Base
5. b : Base
6. c : a = b ∈ pertype(λr,s. ((r ∈ ℤ ⋃ (ℤ × ℤ-o)) ∧ (s ∈ ℤ ⋃ (ℤ × ℤ-o)) ∧ qeq(r;s) = tt))
7. a ∈ ℤ ⋃ (ℤ × ℤ-o)
8. b ∈ ℤ ⋃ (ℤ × ℤ-o)
9. qeq(a;b) = tt
10. ¬↑qeq(a;0)
11. qeq(a;0) = qeq(b;0)
⊢ qeq(1/a;1/b) = tt
Latex:
Latex:
1. r : \mBbbQ{}
2. \mneg{}\muparrow{}qeq(r;0)
\mvdash{} 1/r \mmember{} \mBbbQ{}
By
Latex:
TACTIC:TACTIC:(TACTIC:(newQuotD 1
THEN Try ((InstLemma `qeq-functionality` [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}0\mkleeneclose{}]\mcdot{} THENA Auto))
)
THEN Try (Unfold `member` 0)
THEN EqTypeCDRational
THEN Auto
THEN Try (BLemma `qeq\_refl`)
THEN Try ((BLemma `qinv-wf` THEN Auto)))
Home
Index