Step
*
1
1
of Lemma
qinv_wf
.....antecedent.....
1. istype(ℤ ⋃ (ℤ × ℤ-o))
2. ∀r1,s:ℤ ⋃ (ℤ × ℤ-o). istype(qeq(r1;s) = tt)
3. ∀r1:ℤ ⋃ (ℤ × ℤ-o). qeq(r1;r1) = tt
4. a : Base
5. b : Base
6. c : a = b ∈ pertype(λr,s. ((r ∈ ℤ ⋃ (ℤ × ℤ-o)) ∧ (s ∈ ℤ ⋃ (ℤ × ℤ-o)) ∧ qeq(r;s) = tt))
7. a ∈ ℤ ⋃ (ℤ × ℤ-o)
8. b ∈ ℤ ⋃ (ℤ × ℤ-o)
9. qeq(a;b) = tt
10. ¬↑qeq(a;0)
11. qeq(a;0) = qeq(b;0)
⊢ qeq(1/a;1/b) = tt
BY
{ (Thin (-1)
THEN RepeatFor 2 (MoveToConcl (-1))
THEN (GenConclTerm ⌜a⌝⋅ THENA Auto)
THEN (GenConclTerm ⌜b⌝⋅ THENA Auto)
THEN All Thin
THEN Auto
THEN All D_rational_form) }
1
1. a2 : ℤ
2. a1 : ℤ
3. qeq(a2;a1) = tt
4. ¬↑qeq(a2;0)
⊢ qeq(1/a2;1/a1) = tt
2
1. a3 : ℤ
2. a4 : ℤ-o
3. a1 : ℤ
4. qeq(<a3, a4>;a1) = tt
5. ¬↑qeq(<a3, a4>;0)
⊢ qeq(1/<a3, a4>;1/a1) = tt
3
1. a4 : ℤ
2. a2 : ℤ
3. a3 : ℤ-o
4. qeq(a4;<a2, a3>) = tt
5. ¬↑qeq(a4;0)
⊢ qeq(1/a4;1/<a2, a3>) = tt
4
1. a5 : ℤ
2. a6 : ℤ-o
3. a2 : ℤ
4. a3 : ℤ-o
5. qeq(<a5, a6>;<a2, a3>) = tt
6. ¬↑qeq(<a5, a6>;0)
⊢ qeq(1/<a5, a6>;1/<a2, a3>) = tt
Latex:
Latex:
.....antecedent.....
1. istype(\mBbbZ{} \mcup{} (\mBbbZ{} \mtimes{} \mBbbZ{}\msupminus{}\msupzero{}))
2. \mforall{}r1,s:\mBbbZ{} \mcup{} (\mBbbZ{} \mtimes{} \mBbbZ{}\msupminus{}\msupzero{}). istype(qeq(r1;s) = tt)
3. \mforall{}r1:\mBbbZ{} \mcup{} (\mBbbZ{} \mtimes{} \mBbbZ{}\msupminus{}\msupzero{}). qeq(r1;r1) = tt
4. a : Base
5. b : Base
6. c : a = b
7. a \mmember{} \mBbbZ{} \mcup{} (\mBbbZ{} \mtimes{} \mBbbZ{}\msupminus{}\msupzero{})
8. b \mmember{} \mBbbZ{} \mcup{} (\mBbbZ{} \mtimes{} \mBbbZ{}\msupminus{}\msupzero{})
9. qeq(a;b) = tt
10. \mneg{}\muparrow{}qeq(a;0)
11. qeq(a;0) = qeq(b;0)
\mvdash{} qeq(1/a;1/b) = tt
By
Latex:
(Thin (-1)
THEN RepeatFor 2 (MoveToConcl (-1))
THEN (GenConclTerm \mkleeneopen{}a\mkleeneclose{}\mcdot{} THENA Auto)
THEN (GenConclTerm \mkleeneopen{}b\mkleeneclose{}\mcdot{} THENA Auto)
THEN All Thin
THEN Auto
THEN All D\_rational\_form)
Home
Index