Step
*
of Lemma
qsum-linearity2
∀[a,b:ℤ]. ∀[X,Y:{a..b-} ⟶ ℚ]. (Σa ≤ i < b. X[i] + Y[i] = (Σa ≤ i < b. X[i] + Σa ≤ i < b. Y[i]) ∈ ℚ)
BY
{ xxxAssert ⌜∀d:ℕ
∀[a,b:ℤ].
∀[X,Y:{a..b-} ⟶ ℚ]. (Σa ≤ i < b. X[i] + Y[i] = (Σa ≤ i < b. X[i] + Σa ≤ i < b. Y[i]) ∈ ℚ)
supposing (b - a) ≤ d⌝⋅xxx }
1
.....assertion.....
∀d:ℕ
∀[a,b:ℤ].
∀[X,Y:{a..b-} ⟶ ℚ]. (Σa ≤ i < b. X[i] + Y[i] = (Σa ≤ i < b. X[i] + Σa ≤ i < b. Y[i]) ∈ ℚ) supposing (b - a) ≤ d
2
1. ∀d:ℕ
∀[a,b:ℤ].
∀[X,Y:{a..b-} ⟶ ℚ]. (Σa ≤ i < b. X[i] + Y[i] = (Σa ≤ i < b. X[i] + Σa ≤ i < b. Y[i]) ∈ ℚ) supposing (b - a) ≤ d
⊢ ∀[a,b:ℤ]. ∀[X,Y:{a..b-} ⟶ ℚ]. (Σa ≤ i < b. X[i] + Y[i] = (Σa ≤ i < b. X[i] + Σa ≤ i < b. Y[i]) ∈ ℚ)
Latex:
Latex:
\mforall{}[a,b:\mBbbZ{}]. \mforall{}[X,Y:\{a..b\msupminus{}\} {}\mrightarrow{} \mBbbQ{}]. (\mSigma{}a \mleq{} i < b. X[i] + Y[i] = (\mSigma{}a \mleq{} i < b. X[i] + \mSigma{}a \mleq{} i < b. Y[i]))
By
Latex:
xxxAssert \mkleeneopen{}\mforall{}d:\mBbbN{}
\mforall{}[a,b:\mBbbZ{}].
\mforall{}[X,Y:\{a..b\msupminus{}\} {}\mrightarrow{} \mBbbQ{}].
(\mSigma{}a \mleq{} i < b. X[i] + Y[i] = (\mSigma{}a \mleq{} i < b. X[i] + \mSigma{}a \mleq{} i < b. Y[i]))
supposing (b - a) \mleq{} d\mkleeneclose{}\mcdot{}xxx
Home
Index