Nuprl Lemma : qsum-linearity2

[a,b:ℤ]. ∀[X,Y:{a..b-} ⟶ ℚ].  a ≤ i < b. X[i] Y[i] a ≤ i < b. X[i] + Σa ≤ i < b. Y[i]) ∈ ℚ)


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qadd: s rationals: int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b qadd: s callbyvalueall: callbyvalueall evalall: evalall(t) subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k true: True so_lambda: λ2x.t[x] squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf rationals_wf le_wf subtract_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf qadd_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int-subtype-rationals decidable__lt lelt_wf qsum_wf qadd_assoc iff_weakening_equal qadd_ac_1_q qsum_unroll squash_wf true_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality functionEquality equalityTransitivity equalitySymmetry isect_memberFormation because_Cache unionElimination applyEquality functionExtensionality equalityElimination productElimination promote_hyp instantiate cumulativity dependent_set_memberEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[X,Y:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].    (\mSigma{}a  \mleq{}  i  <  b.  X[i]  +  Y[i]  =  (\mSigma{}a  \mleq{}  i  <  b.  X[i]  +  \mSigma{}a  \mleq{}  i  <  b.  Y[i]))



Date html generated: 2018_05_22-AM-00_02_23
Last ObjectModification: 2017_07_26-PM-06_50_48

Theory : rationals


Home Index