Nuprl Lemma : qsum-linearity2
∀[a,b:ℤ]. ∀[X,Y:{a..b-} ⟶ ℚ].  (Σa ≤ i < b. X[i] + Y[i] = (Σa ≤ i < b. X[i] + Σa ≤ i < b. Y[i]) ∈ ℚ)
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j]
, 
qadd: r + s
, 
rationals: ℚ
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
qadd: r + s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
rationals_wf, 
le_wf, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
qadd_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
int-subtype-rationals, 
decidable__lt, 
lelt_wf, 
qsum_wf, 
qadd_assoc, 
iff_weakening_equal, 
qadd_ac_1_q, 
qsum_unroll, 
squash_wf, 
true_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberFormation, 
because_Cache, 
unionElimination, 
applyEquality, 
functionExtensionality, 
equalityElimination, 
productElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
dependent_set_memberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[X,Y:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].    (\mSigma{}a  \mleq{}  i  <  b.  X[i]  +  Y[i]  =  (\mSigma{}a  \mleq{}  i  <  b.  X[i]  +  \mSigma{}a  \mleq{}  i  <  b.  Y[i]))
Date html generated:
2018_05_22-AM-00_02_23
Last ObjectModification:
2017_07_26-PM-06_50_48
Theory : rationals
Home
Index