Nuprl Lemma : qsum_unroll
∀[a,b:ℤ]. ∀[E:{a..b-} ⟶ ℚ]. (Σa ≤ j < b. E[j] ~ if a <z b then Σa ≤ j < b - 1. E[j] + E[b - 1] else 0 fi )
Proof
Definitions occuring in Statement :
qsum: Σa ≤ j < b. E[j]
,
qadd: r + s
,
rationals: ℚ
,
int_seg: {i..j-}
,
ifthenelse: if b then t else f fi
,
lt_int: i <z j
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
subtract: n - m
,
natural_number: $n
,
int: ℤ
,
sqequal: s ~ t
Definitions unfolded in proof :
qsum: Σa ≤ j < b. E[j]
,
rng_sum: rng_sum,
mon_itop: Π lb ≤ i < ub. E[i]
,
add_grp_of_rng: r↓+gp
,
grp_op: *
,
pi2: snd(t)
,
pi1: fst(t)
,
grp_id: e
,
qrng: <ℚ+*>
,
rng_plus: +r
,
rng_zero: 0
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
itop: Π(op,id) lb ≤ i < ub. E[i]
,
ycomb: Y
,
infix_ap: x f y
Lemmas referenced :
int_seg_wf,
rationals_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
hypothesis,
sqequalAxiom,
functionEquality,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
isect_memberEquality,
because_Cache,
intEquality
Latex:
\mforall{}[a,b:\mBbbZ{}]. \mforall{}[E:\{a..b\msupminus{}\} {}\mrightarrow{} \mBbbQ{}].
(\mSigma{}a \mleq{} j < b. E[j] \msim{} if a <z b then \mSigma{}a \mleq{} j < b - 1. E[j] + E[b - 1] else 0 fi )
Date html generated:
2016_05_15-PM-11_06_20
Last ObjectModification:
2015_12_27-PM-07_45_08
Theory : rationals
Home
Index