Nuprl Lemma : qsum_unroll

[a,b:ℤ]. ∀[E:{a..b-} ⟶ ℚ].  a ≤ j < b. E[j] if a <then Σa ≤ j < 1. E[j] E[b 1] else fi )


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] qadd: s rationals: int_seg: {i..j-} ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] subtract: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  qsum: Σa ≤ j < b. E[j] rng_sum: rng_sum mon_itop: Π lb ≤ i < ub. E[i] add_grp_of_rng: r↓+gp grp_op: * pi2: snd(t) pi1: fst(t) grp_id: e qrng: <ℚ+*> rng_plus: +r rng_zero: 0 uall: [x:A]. B[x] member: t ∈ T itop: Π(op,id) lb ≤ i < ub. E[i] ycomb: Y infix_ap: y
Lemmas referenced :  int_seg_wf rationals_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut hypothesis sqequalAxiom functionEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality because_Cache intEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[E:\{a..b\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].
    (\mSigma{}a  \mleq{}  j  <  b.  E[j]  \msim{}  if  a  <z  b  then  \mSigma{}a  \mleq{}  j  <  b  -  1.  E[j]  +  E[b  -  1]  else  0  fi  )



Date html generated: 2016_05_15-PM-11_06_20
Last ObjectModification: 2015_12_27-PM-07_45_08

Theory : rationals


Home Index