Nuprl Lemma : sum_unroll_unit_q

[i,j:ℤ].  ∀[E:{i..j-} ⟶ ℚ]. i ≤ k < j. E[k] E[i] ∈ ℚsupposing (i 1) j ∈ ℤ


Proof




Definitions occuring in Statement :  qsum: Σa ≤ j < b. E[j] rationals: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B qrng: <ℚ+*> rng_car: |r| pi1: fst(t) qsum: Σa ≤ j < b. E[j]
Lemmas referenced :  rng_sum_unroll_unit qrng_wf crng_subtype_rng
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis applyEquality sqequalRule

Latex:
\mforall{}[i,j:\mBbbZ{}].    \mforall{}[E:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbQ{}].  (\mSigma{}i  \mleq{}  k  <  j.  E[k]  =  E[i])  supposing  (i  +  1)  =  j



Date html generated: 2020_05_20-AM-09_25_01
Last ObjectModification: 2020_01_28-PM-04_53_16

Theory : rationals


Home Index