Nuprl Lemma : groupoid-cat_wf

[G:Groupoid]. (cat(G) ∈ SmallCategory)


Proof




Definitions occuring in Statement :  groupoid-cat: cat(G) groupoid: Groupoid small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  pi1: fst(t) groupoid: Groupoid groupoid-cat: cat(G) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  groupoid_wf
Rules used in proof :  lemma_by_obid equalitySymmetry equalityTransitivity axiomEquality hypothesis hypothesisEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[G:Groupoid].  (cat(G)  \mmember{}  SmallCategory)



Date html generated: 2020_05_20-AM-07_55_09
Last ObjectModification: 2015_12_28-PM-02_23_07

Theory : small!categories


Home Index