Nuprl Lemma : test-prog-obj_wf

x:test-prog(). (test-prog-obj(x) ∈ test-Obj())


Proof




Definitions occuring in Statement :  test-prog-obj: test-prog-obj(x) test-prog: test-prog() test-Obj: test-Obj() all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] test-Obj: test-Obj() test-prog-obj: test-prog-obj(x) uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q test-prog: test-prog() subtype_rel: A ⊆B
Lemmas referenced :  mobj-ext test-Spec_wf mrec_wf test-prog_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis productElimination dependent_pairEquality_alt tokenEquality hypothesisEquality universeIsType applyEquality

Latex:
\mforall{}x:test-prog().  (test-prog-obj(x)  \mmember{}  test-Obj())



Date html generated: 2019_10_15-AM-10_48_16
Last ObjectModification: 2019_03_25-PM-01_47_43

Theory : tree_1


Home Index