Nuprl Lemma : apply-spread
∀[p,a,F:Top].  (let x,y = p in F[x;y] a ~ let x,y = p in F[x;y] a)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
apply: f a
, 
spread: spread def, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
Lemmas referenced : 
lifting-apply-spread, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[p,a,F:Top].    (let  x,y  =  p  in  F[x;y]  a  \msim{}  let  x,y  =  p  in  F[x;y]  a)
Date html generated:
2016_05_15-PM-02_08_25
Last ObjectModification:
2015_12_27-AM-00_36_45
Theory : untyped!computation
Home
Index