Nuprl Lemma : callbyvalueall-apply2

[g:Base]. ∀[a,F:Top].  let f ⟵ in let x ⟵ in F[x] let x ⟵ in F[x] supposing ~ λx.(g x)


Proof




Definitions occuring in Statement :  callbyvalueall: callbyvalueall uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] apply: a lambda: λx.A[x] base: Base sqequal: t
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a so_lambda: λ2x.t[x] top: Top so_apply: x[s]
Lemmas referenced :  base_sq top_wf base_wf callbyvalueall-apply
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalIntensionalEquality lemma_by_obid because_Cache cut hypothesis isect_memberFormation introduction sqequalAxiom sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality equalityTransitivity equalitySymmetry independent_isectElimination voidElimination voidEquality

Latex:
\mforall{}[g:Base].  \mforall{}[a,F:Top].
    let  f  \mleftarrow{}{}  g  in  let  x  \mleftarrow{}{}  f  a  in  F[x]  \msim{}  let  x  \mleftarrow{}{}  g  a  in  F[x]  supposing  g  \msim{}  \mlambda{}x.(g  x)



Date html generated: 2016_05_15-PM-02_08_49
Last ObjectModification: 2015_12_27-AM-00_36_28

Theory : untyped!computation


Home Index