Nuprl Lemma : callbyvalueall-apply2
∀[g:Base]. ∀[a,F:Top]. let f ⟵ g in let x ⟵ f a in F[x] ~ let x ⟵ g a in F[x] supposing g ~ λx.(g x)
Proof
Definitions occuring in Statement :
callbyvalueall: callbyvalueall,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
apply: f a
,
lambda: λx.A[x]
,
base: Base
,
sqequal: s ~ t
Definitions unfolded in proof :
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
top: Top
,
so_apply: x[s]
Lemmas referenced :
base_sq,
top_wf,
base_wf,
callbyvalueall-apply
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
sqequalIntensionalEquality,
lemma_by_obid,
because_Cache,
cut,
hypothesis,
isect_memberFormation,
introduction,
sqequalAxiom,
sqequalRule,
sqequalHypSubstitution,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
voidElimination,
voidEquality
Latex:
\mforall{}[g:Base]. \mforall{}[a,F:Top].
let f \mleftarrow{}{} g in let x \mleftarrow{}{} f a in F[x] \msim{} let x \mleftarrow{}{} g a in F[x] supposing g \msim{} \mlambda{}x.(g x)
Date html generated:
2016_05_15-PM-02_08_49
Last ObjectModification:
2015_12_27-AM-00_36_28
Theory : untyped!computation
Home
Index