Nuprl Lemma : callbyvalueall-apply2
∀[g:Base]. ∀[a,F:Top].  let f ⟵ g in let x ⟵ f a in F[x] ~ let x ⟵ g a in F[x] supposing g ~ λx.(g x)
Proof
Definitions occuring in Statement : 
callbyvalueall: callbyvalueall, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
apply: f a
, 
lambda: λx.A[x]
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
Lemmas referenced : 
base_sq, 
top_wf, 
base_wf, 
callbyvalueall-apply
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalIntensionalEquality, 
lemma_by_obid, 
because_Cache, 
cut, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
voidElimination, 
voidEquality
Latex:
\mforall{}[g:Base].  \mforall{}[a,F:Top].
    let  f  \mleftarrow{}{}  g  in  let  x  \mleftarrow{}{}  f  a  in  F[x]  \msim{}  let  x  \mleftarrow{}{}  g  a  in  F[x]  supposing  g  \msim{}  \mlambda{}x.(g  x)
Date html generated:
2016_05_15-PM-02_08_49
Last ObjectModification:
2015_12_27-AM-00_36_28
Theory : untyped!computation
Home
Index