Step
*
of Lemma
callbyvalueall-seq-spread
∀[F,G,H,L,K:Top]. ∀[m:ℕ+]. ∀[n:ℕm + 1].
(let x,y = callbyvalueall-seq(L;λf.mk_applies(f;K;n);mk_lambdas(λa.<F[a], G[a]>;m - 1);n;m)
in H[x;y] ~ callbyvalueall-seq(L;λf.mk_applies(f;K;n);mk_lambdas(λa.H[F[a];G[a]];m - 1);n;m))
BY
{ (Auto
THEN (Assert ⌜∃i:ℕ. (m = (n + i) ∈ ℤ)⌝⋅ THENA (InstConcl [⌜m - n⌝]⋅ THEN Auto'))
THEN ExRepD
THEN (Assert ⌜m ~ n + i⌝⋅ THENA Auto)
THEN Thin (-2)
THEN (D (-3) THENA Auto)
THEN MoveToConcl (-3)
THEN D (-4)
THEN MoveToConcl (-4)
THEN HypSubst' (-1) 0
THEN ThinVar `m'⋅
THEN RepeatFor 2 (MoveToConcl (-2))
THEN NatInd (-1)
THEN Auto) }
1
1. F : Top
2. G : Top
3. H : Top
4. L : Top
5. i : ℤ
6. K : Top
7. n : ℤ
8. 0 < n + 0
9. 0 ≤ n
10. n < (n + 0) + 1
⊢ let x,y = callbyvalueall-seq(L;λf.mk_applies(f;K;n);mk_lambdas(λa.<F[a], G[a]>;(n + 0) - 1);n;n + 0)
in H[x;y] ~ callbyvalueall-seq(L;λf.mk_applies(f;K;n);mk_lambdas(λa.H[F[a];G[a]];(n + 0) - 1);n;n + 0)
2
1. F : Top
2. G : Top
3. H : Top
4. L : Top
5. i : ℤ
6. 0 < i
7. ∀K:Top. ∀n:ℤ.
(0 < n + (i - 1)
⇒ 0 ≤ n < (n + (i - 1)) + 1
⇒ (let x,y = callbyvalueall-seq(L;λf.mk_applies(f;K;n);mk_lambdas(λa.<F[a], G[a]>;(n + (i - 1)) - 1);n;n
+ (i - 1))
in H[x;y] ~ callbyvalueall-seq(L;λf.mk_applies(f;K;n);mk_lambdas(λa.H[F[a];G[a]];(n + (i - 1)) - 1);n;n
+ (i - 1))))
8. K : Top
9. n : ℤ
10. 0 < n + i
11. 0 ≤ n
12. n < (n + i) + 1
⊢ let x,y = callbyvalueall-seq(L;λf.mk_applies(f;K;n);mk_lambdas(λa.<F[a], G[a]>;(n + i) - 1);n;n + i)
in H[x;y] ~ callbyvalueall-seq(L;λf.mk_applies(f;K;n);mk_lambdas(λa.H[F[a];G[a]];(n + i) - 1);n;n + i)
Latex:
Latex:
\mforall{}[F,G,H,L,K:Top]. \mforall{}[m:\mBbbN{}\msupplus{}]. \mforall{}[n:\mBbbN{}m + 1].
(let x,y = callbyvalueall-seq(L;\mlambda{}f.mk\_applies(f;K;n);mk\_lambdas(\mlambda{}a.<F[a], G[a]>m - 1);n;m)
in H[x;y] \msim{} callbyvalueall-seq(L;\mlambda{}f.mk\_applies(f;K;n);mk\_lambdas(\mlambda{}a.H[F[a];G[a]];m - 1);n;m))
By
Latex:
(Auto
THEN (Assert \mkleeneopen{}\mexists{}i:\mBbbN{}. (m = (n + i))\mkleeneclose{}\mcdot{} THENA (InstConcl [\mkleeneopen{}m - n\mkleeneclose{}]\mcdot{} THEN Auto'))
THEN ExRepD
THEN (Assert \mkleeneopen{}m \msim{} n + i\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-2)
THEN (D (-3) THENA Auto)
THEN MoveToConcl (-3)
THEN D (-4)
THEN MoveToConcl (-4)
THEN HypSubst' (-1) 0
THEN ThinVar `m'\mcdot{}
THEN RepeatFor 2 (MoveToConcl (-2))
THEN NatInd (-1)
THEN Auto)
Home
Index