Nuprl Lemma : callbyvalueall-seq-spread
∀[F,G,H,L,K:Top]. ∀[m:ℕ+]. ∀[n:ℕm + 1].
  (let x,y = callbyvalueall-seq(L;λf.mk_applies(f;K;n);mk_lambdas(λa.<F[a], G[a]>m - 1);n;m) 
   in H[x;y] ~ callbyvalueall-seq(L;λf.mk_applies(f;K;n);mk_lambdas(λa.H[F[a];G[a]];m - 1);n;m))
Proof
Definitions occuring in Statement : 
mk_applies: mk_applies(F;G;m), 
mk_lambdas: mk_lambdas(F;m), 
callbyvalueall-seq: callbyvalueall-seq(L;G;F;n;m), 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s1;s2], 
so_apply: x[s], 
lambda: λx.A[x], 
spread: spread def, 
pair: <a, b>, 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
exists: ∃x:A. B[x], 
nat: ℕ, 
nat_plus: ℕ+, 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ge: i ≥ j , 
sq_type: SQType(T), 
callbyvalueall-seq: callbyvalueall-seq(L;G;F;n;m), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
mk_applies: mk_applies(F;G;m), 
primrec: primrec(n;b;c), 
subtract: n - m, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
le: A ≤ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
true: True
Lemmas referenced : 
subtract_wf, 
int_seg_properties, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
le_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal_wf, 
subtype_base_sq, 
nat_plus_wf, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
nat_properties, 
decidable__lt, 
ge_wf, 
lelt_wf, 
int_seg_wf, 
top_wf, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
add-zero, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
primrec1_lemma, 
mk_applies_lambdas1, 
lifting-strict-callbyvalueall, 
strict4-spread, 
add-subtract-cancel, 
mk_applies_lambdas2, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
eq_int_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
mk_applies_unroll, 
bool_cases, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
mk_applies_fun
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_pairFormation, 
dependent_set_memberEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
addEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
intWeakElimination, 
lambdaFormation, 
sqequalAxiom, 
equalityElimination, 
promote_hyp, 
baseClosed, 
applyEquality, 
minusEquality, 
impliesFunctionality
Latex:
\mforall{}[F,G,H,L,K:Top].  \mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}m  +  1].
    (let  x,y  =  callbyvalueall-seq(L;\mlambda{}f.mk\_applies(f;K;n);mk\_lambdas(\mlambda{}a.<F[a],  G[a]>m  -  1);n;m) 
      in  H[x;y]  \msim{}  callbyvalueall-seq(L;\mlambda{}f.mk\_applies(f;K;n);mk\_lambdas(\mlambda{}a.H[F[a];G[a]];m  -  1);n;m))
Date html generated:
2017_10_01-AM-08_41_19
Last ObjectModification:
2017_07_26-PM-04_28_34
Theory : untyped!computation
Home
Index