Nuprl Lemma : mk_applies_lambdas1

[F,G:Top]. ∀[n:ℕ]. ∀[m:ℕ1].  (mk_applies(mk_lambdas(F;m);G;n) mk_applies(F;λk.(G (m k));n m))


Proof




Definitions occuring in Statement :  mk_applies: mk_applies(F;G;m) mk_lambdas: mk_lambdas(F;m) int_seg: {i..j-} nat: uall: [x:A]. B[x] top: Top apply: a lambda: λx.A[x] subtract: m add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  exists: x:A. B[x] member: t ∈ T nat: uall: [x:A]. B[x] int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top prop: sq_type: SQType(T) subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  top_wf nat_wf int_seg_wf mk_applies_lambdas2 false_wf int_seg_subtype_nat mk_applies_split int_subtype_base subtype_base_sq equal_wf int_formula_prop_eq_lemma intformeq_wf decidable__equal_int le_wf int_formula_prop_wf int_term_value_add_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermAdd_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties subtract_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_pairFormation dependent_set_memberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality addEquality productElimination dependent_functionElimination unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll because_Cache instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination applyEquality lambdaFormation isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[F,G:Top].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].
    (mk\_applies(mk\_lambdas(F;m);G;n)  \msim{}  mk\_applies(F;\mlambda{}k.(G  (m  +  k));n  -  m))



Date html generated: 2016_05_15-PM-02_10_36
Last ObjectModification: 2016_01_15-PM-10_20_47

Theory : untyped!computation


Home Index