Nuprl Lemma : cbva_seq-spread

[F,G,H,L:Top]. ∀[m:ℕ].  (let x,y cbva_seq(L; λg.<F[g], G[g]>m) in H[x;y] cbva_seq(L; λg.H[F[g];G[g]]; m))


Proof




Definitions occuring in Statement :  cbva_seq: cbva_seq(L; F; m) nat: uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] so_apply: x[s] lambda: λx.A[x] spread: spread def pair: <a, b> sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cbva_seq: cbva_seq(L; F; m)
Lemmas referenced :  callbyvalueall_seq-spread0 nat_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalAxiom sqequalRule isect_memberEquality because_Cache

Latex:
\mforall{}[F,G,H,L:Top].  \mforall{}[m:\mBbbN{}].
    (let  x,y  =  cbva\_seq(L;  \mlambda{}g.<F[g],  G[g]>  m) 
      in  H[x;y]  \msim{}  cbva\_seq(L;  \mlambda{}g.H[F[g];G[g]];  m))



Date html generated: 2016_05_15-PM-02_14_47
Last ObjectModification: 2015_12_27-AM-00_32_14

Theory : untyped!computation


Home Index