Nuprl Lemma : lifting-callbyvalueall-decide-name_eq
∀[a,b,F,G,H:Top].
  (let x ⟵ case name_eq(a;b) of inl(x) => F[x] | inr(x) => H[x]
   in G[x] ~ case name_eq(a;b) of inl(x) => let x ⟵ F[x] in G[x] | inr(x) => let x ⟵ H[x] in G[x])
Proof
Definitions occuring in Statement : 
name_eq: name_eq(x;y)
, 
callbyvalueall: callbyvalueall, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
lifting-callbyvalueall-decide, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[a,b,F,G,H:Top].
    (let  x  \mleftarrow{}{}  case  name\_eq(a;b)  of  inl(x)  =>  F[x]  |  inr(x)  =>  H[x]
      in  G[x]  \msim{}  case  name\_eq(a;b)  of  inl(x)  =>  let  x  \mleftarrow{}{}  F[x]  in  G[x]  |  inr(x)  =>  let  x  \mleftarrow{}{}  H[x]  in  G[x])
Date html generated:
2016_05_15-PM-02_07_17
Last ObjectModification:
2015_12_27-AM-00_37_32
Theory : untyped!computation
Home
Index