Nuprl Lemma : mon_nat_op_hom_swap

[g,h:IMonoid]. ∀[f:MonHom(g,h)]. ∀[n:ℕ]. ∀[u:|g|].  ((n ⋅ (f u)) (f (n ⋅ u)) ∈ |h|)


Proof




Definitions occuring in Statement :  mon_nat_op: n ⋅ e monoid_hom: MonHom(M1,M2) imon: IMonoid grp_car: |g| nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T imon: IMonoid monoid_hom_p: IsMonHom{M1,M2}(f) and: P ∧ Q fun_thru_2op: FunThru2op(A;B;opa;opb;f) nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top prop: decidable: Dec(P) or: P ∨ Q squash: T monoid_hom: MonHom(M1,M2) true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat_plus: + infix_ap: y
Lemmas referenced :  grp_car_wf nat_wf monoid_hom_wf imon_wf monoid_hom_properties nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma equal_wf squash_wf true_wf mon_nat_op_zero iff_weakening_equal mon_nat_op_unroll grp_op_wf mon_nat_op_wf le_wf infix_ap_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache productElimination intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed dependent_set_memberEquality

Latex:
\mforall{}[g,h:IMonoid].  \mforall{}[f:MonHom(g,h)].  \mforall{}[n:\mBbbN{}].  \mforall{}[u:|g|].    ((n  \mcdot{}  (f  u))  =  (f  (n  \mcdot{}  u)))



Date html generated: 2017_10_01-AM-08_16_39
Last ObjectModification: 2017_02_28-PM-02_01_59

Theory : groups_1


Home Index