Nuprl Lemma : nat_op_on_nat_add_mon

[m,n:ℕ].  ((m ⋅ n) (m n) ∈ ℕ)


Proof




Definitions occuring in Statement :  nat_add_mon: <ℕ,+> mon_nat_op: n ⋅ e nat: uall: [x:A]. B[x] multiply: m equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q squash: T subtype_rel: A ⊆B guard: {T} nat_add_mon: <ℕ,+> grp_car: |g| pi1: fst(t) true: True iff: ⇐⇒ Q rev_implies:  Q grp_id: e pi2: snd(t) le: A ≤ B less_than': less_than'(a;b) nat_plus: + infix_ap: y grp_op: *
Lemmas referenced :  nat_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma equal_wf squash_wf true_wf mon_nat_op_zero nat_add_mon_wf2 iabmonoid_subtype_imon abmonoid_subtype_iabmonoid abdmonoid_abmonoid ocmon_subtype_abdmonoid subtype_rel_transitivity ocmon_wf abdmonoid_wf abmonoid_wf iabmonoid_wf imon_wf grp_car_wf nat_add_mon_wf decidable__equal_int intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma le_wf iff_weakening_equal false_wf mon_nat_op_unroll mul_bounds_1a grp_op_wf itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate multiplyEquality dependent_set_memberEquality imageMemberEquality baseClosed productElimination applyLambdaEquality

Latex:
\mforall{}[m,n:\mBbbN{}].    ((m  \mcdot{}  n)  =  (m  *  n))



Date html generated: 2017_10_01-AM-08_17_01
Last ObjectModification: 2017_02_28-PM-02_02_28

Theory : groups_1


Home Index