Nuprl Lemma : assert_of_rng_eq

[r:DRng]. ∀[a,b:|r|].  uiff(↑(a =b b);a b ∈ |r|)


Proof




Definitions occuring in Statement :  drng: DRng rng_eq: =b rng_car: |r| assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  eqfun_p: IsEqFun(T;eq) uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a prop: infix_ap: y drng: DRng implies:  Q
Lemmas referenced :  drng_all_properties assert_wf rng_eq_wf assert_witness equal_wf rng_car_wf drng_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination isect_memberEquality independent_pairEquality axiomEquality applyEquality setElimination rename equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mforall{}[r:DRng].  \mforall{}[a,b:|r|].    uiff(\muparrow{}(a  =\msubb{}  b);a  =  b)



Date html generated: 2016_05_15-PM-00_20_38
Last ObjectModification: 2015_12_27-AM-00_02_46

Theory : rings_1


Home Index