Nuprl Lemma : assert_of_rng_eq
∀[r:DRng]. ∀[a,b:|r|].  uiff(↑(a =b b);a = b ∈ |r|)
Proof
Definitions occuring in Statement : 
drng: DRng
, 
rng_eq: =b
, 
rng_car: |r|
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
eqfun_p: IsEqFun(T;eq)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
infix_ap: x f y
, 
drng: DRng
, 
implies: P 
⇒ Q
Lemmas referenced : 
drng_all_properties, 
assert_wf, 
rng_eq_wf, 
assert_witness, 
equal_wf, 
rng_car_wf, 
drng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
isect_memberEquality, 
independent_pairEquality, 
axiomEquality, 
applyEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mforall{}[r:DRng].  \mforall{}[a,b:|r|].    uiff(\muparrow{}(a  =\msubb{}  b);a  =  b)
Date html generated:
2016_05_15-PM-00_20_38
Last ObjectModification:
2015_12_27-AM-00_02_46
Theory : rings_1
Home
Index