Nuprl Lemma : imonomial-term-linear-ringeq

r:Rng. ∀f:ℤ ⟶ |r|. ∀ws:ℤ List. ∀c:ℤ.  (ring_term_value(f;imonomial-term(<c, ws>)) (int-to-ring(r;c) ring_term_valu\000Ce(f;imonomial-term(<1, ws>))) ∈ |r|)


Proof




Definitions occuring in Statement :  ring_term_value: ring_term_value(f;t) int-to-ring: int-to-ring(r;n) rng: Rng rng_times: * rng_car: |r| imonomial-term: imonomial-term(m) list: List infix_ap: y all: x:A. B[x] function: x:A ⟶ B[x] pair: <a, b> natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  top: Top implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] rng: Rng prop: uall: [x:A]. B[x] squash: T member: t ∈ T imonomial-term: imonomial-term(m) all: x:A. B[x]
Lemmas referenced :  rng_wf list_wf ring_term_value_const_lemma iff_weakening_equal itermVar_wf itermMultiply_wf int_term_wf list_accum_wf ring_term_value_wf int-to-ring_wf rng_times_wf infix_ap_wf itermConstant_wf imonomial-ringeq-lemma rng_car_wf true_wf squash_wf equal_wf
Rules used in proof :  functionEquality voidEquality voidElimination isect_memberEquality independent_functionElimination productElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality intEquality functionExtensionality because_Cache dependent_functionElimination rename setElimination universeEquality equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid introduction imageElimination sqequalHypSubstitution lambdaEquality thin applyEquality sqequalRule cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}r:Rng.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  |r|.  \mforall{}ws:\mBbbZ{}  List.  \mforall{}c:\mBbbZ{}.
    (ring\_term\_value(f;imonomial-term(<c,  ws>))  =  (int-to-ring(r;c)  *  ring\_term\_value(f;imonomial-term\000C(ə,  ws>))))



Date html generated: 2018_05_21-PM-03_16_24
Last ObjectModification: 2018_01_25-PM-02_19_31

Theory : rings_1


Home Index