Nuprl Lemma : imonomial-ringeq-lemma

r:Rng. ∀f:ℤ ⟶ |r|. ∀ws:ℤ List. ∀t:int_term().
  (ring_term_value(f;accumulate (with value and list item v):
                      (*) vv
                     over list:
                       ws
                     with starting value:
                      t))
  (ring_term_value(f;t) 
     
     ring_term_value(f;accumulate (with value and list item v):
                        (*) vv
                       over list:
                         ws
                       with starting value:
                        "1")))
  ∈ |r|)


Proof




Definitions occuring in Statement :  ring_term_value: ring_term_value(f;t) rng: Rng rng_times: * rng_car: |r| itermMultiply: left (*) right itermVar: vvar itermConstant: "const" int_term: int_term() list_accum: list_accum list: List infix_ap: y all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  prop: itermConstant: "const" itermVar: vvar int_term_ind: int_term_ind itermMultiply: left (*) right ring_term_value: ring_term_value(f;t) rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True infix_ap: y squash: T top: Top implies:  Q so_apply: x[s] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] rng: Rng so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  rng_one_wf rng_times_one rng_wf iff_weakening_equal list_accum_cons_lemma ring_term_value_const_lemma list_accum_nil_lemma list_wf itermConstant_wf rng_times_wf infix_ap_wf itermVar_wf itermMultiply_wf list_accum_wf ring_term_value_wf rng_car_wf equal_wf int_term_wf all_wf list_induction squash_wf true_wf int-to-ring-one rng_times_assoc
Rules used in proof :  functionEquality productElimination independent_isectElimination equalitySymmetry equalityTransitivity baseClosed imageMemberEquality imageElimination voidEquality voidElimination isect_memberEquality dependent_functionElimination independent_functionElimination natural_numberEquality applyEquality functionExtensionality hypothesisEquality because_Cache rename setElimination hypothesis lambdaEquality sqequalRule intEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution universeEquality

Latex:
\mforall{}r:Rng.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  |r|.  \mforall{}ws:\mBbbZ{}  List.  \mforall{}t:int\_term().
    (ring\_term\_value(f;accumulate  (with  value  t  and  list  item  v):
                                            t  (*)  vv
                                          over  list:
                                              ws
                                          with  starting  value:
                                            t))
    =  (ring\_term\_value(f;t) 
          * 
          ring\_term\_value(f;accumulate  (with  value  t  and  list  item  v):
                                                t  (*)  vv
                                              over  list:
                                                  ws
                                              with  starting  value:
                                                "1"))))



Date html generated: 2018_05_21-PM-03_16_21
Last ObjectModification: 2018_01_25-PM-02_19_22

Theory : rings_1


Home Index