Nuprl Lemma : ipolynomial-term-cons-ringeq
∀[r:Rng]. ∀[m:iMonomial()]. ∀[p:iMonomial() List].
  ipolynomial-term([m / p]) ≡ imonomial-term(m) (+) ipolynomial-term(p)
Proof
Definitions occuring in Statement : 
ringeq_int_terms: t1 ≡ t2
, 
rng: Rng
, 
ipolynomial-term: ipolynomial-term(p)
, 
imonomial-term: imonomial-term(m)
, 
iMonomial: iMonomial()
, 
itermAdd: left (+) right
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rng: Rng
, 
ringeq_int_terms: t1 ≡ t2
, 
cons: [a / b]
, 
btrue: tt
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
ipolynomial-term: ipolynomial-term(p)
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
int_nzero: ℤ-o
, 
iMonomial: iMonomial()
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rng_wf, 
list_wf, 
rng_car_wf, 
list_accum_cons_lemma, 
product_subtype_list, 
list_accum_nil_lemma, 
null_nil_lemma, 
spread_cons_lemma, 
null_cons_lemma, 
list-cases, 
iMonomial_wf, 
imonomial-term_wf, 
ring_term_value_wf, 
rng_plus_zero, 
int-to-ring-zero, 
ring_term_value_const_lemma, 
ring_term_value_add_lemma, 
iff_weakening_equal, 
rng_plus_assoc, 
rng_plus_wf, 
infix_ap_wf, 
true_wf, 
squash_wf, 
equal_wf, 
subtype_rel_self, 
sorted_wf, 
int_nzero_wf, 
subtype_rel_product, 
subtype_rel_list, 
list_accum_wf, 
itermAdd_wf, 
ringeq_int_terms_wf, 
int_term_wf, 
all_wf, 
list_induction, 
ringeq_int_terms_functionality, 
itermAdd_functionality_wrt_ringeq, 
ringeq_int_terms_weakening
Rules used in proof : 
because_Cache, 
rename, 
setElimination, 
intEquality, 
functionEquality, 
axiomEquality, 
lambdaEquality, 
productElimination, 
hypothesis_subsumption, 
promote_hyp, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
sqequalRule, 
unionElimination, 
hypothesisEquality, 
dependent_functionElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairEquality, 
applyEquality, 
functionExtensionality, 
equalitySymmetry, 
lambdaFormation, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
universeEquality, 
equalityTransitivity, 
imageElimination, 
independent_functionElimination, 
setEquality, 
independent_isectElimination, 
productEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[m:iMonomial()].  \mforall{}[p:iMonomial()  List].
    ipolynomial-term([m  /  p])  \mequiv{}  imonomial-term(m)  (+)  ipolynomial-term(p)
Date html generated:
2018_05_21-PM-03_16_32
Last ObjectModification:
2018_01_25-PM-02_19_52
Theory : rings_1
Home
Index