Nuprl Lemma : ipolynomial-term-cons-ringeq

[r:Rng]. ∀[m:iMonomial()]. ∀[p:iMonomial() List].
  ipolynomial-term([m p]) ≡ imonomial-term(m) (+) ipolynomial-term(p)


Proof




Definitions occuring in Statement :  ringeq_int_terms: t1 ≡ t2 rng: Rng ipolynomial-term: ipolynomial-term(p) imonomial-term: imonomial-term(m) iMonomial: iMonomial() itermAdd: left (+) right cons: [a b] list: List uall: [x:A]. B[x]
Definitions unfolded in proof :  rng: Rng ringeq_int_terms: t1 ≡ t2 cons: [a b] btrue: tt bfalse: ff ifthenelse: if then else fi  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] top: Top ipolynomial-term: ipolynomial-term(p) or: P ∨ Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q int_nzero: -o iMonomial: iMonomial() rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True squash: T so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B prop: implies:  Q so_lambda: λ2x.t[x] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rng_wf list_wf rng_car_wf list_accum_cons_lemma product_subtype_list list_accum_nil_lemma null_nil_lemma spread_cons_lemma null_cons_lemma list-cases iMonomial_wf imonomial-term_wf ring_term_value_wf rng_plus_zero int-to-ring-zero ring_term_value_const_lemma ring_term_value_add_lemma iff_weakening_equal rng_plus_assoc rng_plus_wf infix_ap_wf true_wf squash_wf equal_wf subtype_rel_self sorted_wf int_nzero_wf subtype_rel_product subtype_rel_list list_accum_wf itermAdd_wf ringeq_int_terms_wf int_term_wf all_wf list_induction ringeq_int_terms_functionality itermAdd_functionality_wrt_ringeq ringeq_int_terms_weakening
Rules used in proof :  because_Cache rename setElimination intEquality functionEquality axiomEquality lambdaEquality productElimination hypothesis_subsumption promote_hyp voidEquality voidElimination isect_memberEquality sqequalRule unionElimination hypothesisEquality dependent_functionElimination thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_pairEquality applyEquality functionExtensionality equalitySymmetry lambdaFormation baseClosed imageMemberEquality natural_numberEquality universeEquality equalityTransitivity imageElimination independent_functionElimination setEquality independent_isectElimination productEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[m:iMonomial()].  \mforall{}[p:iMonomial()  List].
    ipolynomial-term([m  /  p])  \mequiv{}  imonomial-term(m)  (+)  ipolynomial-term(p)



Date html generated: 2018_05_21-PM-03_16_32
Last ObjectModification: 2018_01_25-PM-02_19_52

Theory : rings_1


Home Index