Nuprl Lemma : p-reduce-self

p:ℕ+. ∀n:ℕ.  (p^n mod(p^n) 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  p-reduce: mod(p^n) exp: i^n nat_plus: + nat: all: x:A. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] p-reduce: mod(p^n) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: implies:  Q nequal: a ≠ b ∈  not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q
Lemmas referenced :  nat_wf nat_plus_wf modulus-is-rem exp_wf4 nat_plus_subtype_nat exp_wf3 subtype_rel_sets less_than_wf nequal_wf full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base rem_eq_args exp_wf_nat_plus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalRule sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality intEquality because_Cache lambdaEquality natural_numberEquality independent_isectElimination setElimination rename setEquality approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation baseClosed

Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}n:\mBbbN{}.    (p\^{}n  mod(p\^{}n)  =  0)



Date html generated: 2018_05_21-PM-03_17_57
Last ObjectModification: 2018_05_19-AM-08_08_55

Theory : rings_1


Home Index