Nuprl Lemma : p-reduce-self
∀p:ℕ+. ∀n:ℕ.  (p^n mod(p^n) = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
p-reduce: i mod(p^n)
, 
exp: i^n
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
p-reduce: i mod(p^n)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
Lemmas referenced : 
nat_wf, 
nat_plus_wf, 
modulus-is-rem, 
exp_wf4, 
nat_plus_subtype_nat, 
exp_wf3, 
subtype_rel_sets, 
less_than_wf, 
nequal_wf, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
rem_eq_args, 
exp_wf_nat_plus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
intEquality, 
because_Cache, 
lambdaEquality, 
natural_numberEquality, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
baseClosed
Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}n:\mBbbN{}.    (p\^{}n  mod(p\^{}n)  =  0)
Date html generated:
2018_05_21-PM-03_17_57
Last ObjectModification:
2018_05_19-AM-08_08_55
Theory : rings_1
Home
Index