Nuprl Lemma : p-sep-or

[p:ℕ+]. ∀[x:p-adics(p)].  ∀y:p-adics(p). (p-sep(x;y)  (∀z:p-adics(p). (p-sep(z;x) ∨ p-sep(z;y))))


Proof




Definitions occuring in Statement :  p-sep: p-sep(x;y) p-adics: p-adics(p) nat_plus: + uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q p-sep: p-sep(x;y) exists: x:A. B[x] member: t ∈ T p-adics: p-adics(p) subtype_rel: A ⊆B int_seg: {i..j-} nat_plus: + decidable: Dec(P) or: P ∨ Q prop: not: ¬A false: False uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top and: P ∧ Q guard: {T}
Lemmas referenced :  decidable__equal_int int_seg_wf exp_wf2 nat_plus_subtype_nat p-adics_wf p-sep_wf nat_plus_wf nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf equal_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination applyEquality setElimination rename hypothesisEquality hypothesis lambdaEquality isectElimination natural_numberEquality sqequalRule because_Cache unionElimination inlFormation dependent_pairFormation equalityTransitivity equalitySymmetry independent_isectElimination approximateComputation independent_functionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation inrFormation

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x:p-adics(p)].    \mforall{}y:p-adics(p).  (p-sep(x;y)  {}\mRightarrow{}  (\mforall{}z:p-adics(p).  (p-sep(z;x)  \mvee{}  p-sep(z;y))))



Date html generated: 2018_05_21-PM-03_23_15
Last ObjectModification: 2018_05_19-AM-08_21_31

Theory : rings_1


Home Index