Nuprl Lemma : p-sep-or
∀[p:ℕ+]. ∀[x:p-adics(p)].  ∀y:p-adics(p). (p-sep(x;y) 
⇒ (∀z:p-adics(p). (p-sep(z;x) ∨ p-sep(z;y))))
Proof
Definitions occuring in Statement : 
p-sep: p-sep(x;y)
, 
p-adics: p-adics(p)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
p-sep: p-sep(x;y)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
p-adics: p-adics(p)
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
not: ¬A
, 
false: False
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
and: P ∧ Q
, 
guard: {T}
Lemmas referenced : 
decidable__equal_int, 
int_seg_wf, 
exp_wf2, 
nat_plus_subtype_nat, 
p-adics_wf, 
p-sep_wf, 
nat_plus_wf, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
equal_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
isectElimination, 
natural_numberEquality, 
sqequalRule, 
because_Cache, 
unionElimination, 
inlFormation, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
inrFormation
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x:p-adics(p)].    \mforall{}y:p-adics(p).  (p-sep(x;y)  {}\mRightarrow{}  (\mforall{}z:p-adics(p).  (p-sep(z;x)  \mvee{}  p-sep(z;y))))
Date html generated:
2018_05_21-PM-03_23_15
Last ObjectModification:
2018_05_19-AM-08_21_31
Theory : rings_1
Home
Index