Nuprl Lemma : pa-mul_functionality
∀[p,q:{2...}]. ∀[x1,y1,x2,y2:basic-padic(p)].
  (pa-mul(p;x1;y1) = pa-mul(q;x2;y2) ∈ padic(p)) supposing ((p = q ∈ ℤ) and bpa-equiv(p;x1;x2) and bpa-equiv(p;y1;y2))
Proof
Definitions occuring in Statement : 
pa-mul: pa-mul(p;x;y)
, 
padic: padic(p)
, 
bpa-equiv: bpa-equiv(p;x;y)
, 
basic-padic: basic-padic(p)
, 
int_upper: {i...}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
pa-mul: pa-mul(p;x;y)
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
, 
basic-padic: basic-padic(p)
, 
bpa-equiv: bpa-equiv(p;x;y)
, 
bpa-mul: bpa-mul(p;x;y)
, 
top: Top
, 
nat: ℕ
, 
squash: ↓T
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
p-adics: p-adics(p)
, 
so_lambda: λ2x.t[x]
, 
subtract: n - m
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
so_apply: x[s]
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
equal-padics, 
pa-mul_wf, 
bpa-equiv-iff-norm, 
bpa-mul_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
equal_wf, 
bpa-equiv_wf, 
basic-padic_wf, 
int_upper_wf, 
p-adics_wf, 
p-mul_wf, 
exp_wf2, 
squash_wf, 
true_wf, 
nat_plus_wf, 
p-int_wf, 
exp_add, 
subtype_rel_self, 
p-mul-int, 
iff_weakening_equal, 
p-adic-property, 
nat_plus_properties, 
nat_properties, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
le_wf, 
p-mul-comm, 
all_wf, 
eqmod_wf, 
nat_plus_subtype_nat, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-associates, 
add-zero, 
int_seg_wf, 
int_seg_properties, 
intformand_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
p-mul-assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
hypothesisEquality, 
productElimination, 
dependent_set_memberEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
unionElimination, 
independent_pairFormation, 
lambdaFormation, 
voidElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
addEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
minusEquality, 
applyLambdaEquality
Latex:
\mforall{}[p,q:\{2...\}].  \mforall{}[x1,y1,x2,y2:basic-padic(p)].
    (pa-mul(p;x1;y1)  =  pa-mul(q;x2;y2))  supposing 
          ((p  =  q)  and 
          bpa-equiv(p;x1;x2)  and 
          bpa-equiv(p;y1;y2))
Date html generated:
2018_05_21-PM-03_27_00
Last ObjectModification:
2018_05_19-AM-08_24_23
Theory : rings_1
Home
Index