Nuprl Lemma : pa-mul_functionality

[p,q:{2...}]. ∀[x1,y1,x2,y2:basic-padic(p)].
  (pa-mul(p;x1;y1) pa-mul(q;x2;y2) ∈ padic(p)) supposing ((p q ∈ ℤand bpa-equiv(p;x1;x2) and bpa-equiv(p;y1;y2))


Proof




Definitions occuring in Statement :  pa-mul: pa-mul(p;x;y) padic: padic(p) bpa-equiv: bpa-equiv(p;x;y) basic-padic: basic-padic(p) int_upper: {i...} uimplies: supposing a uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) pa-mul: pa-mul(p;x;y) nat_plus: + int_upper: {i...} le: A ≤ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False prop: subtype_rel: A ⊆B less_than': less_than'(a;b) true: True basic-padic: basic-padic(p) bpa-equiv: bpa-equiv(p;x;y) bpa-mul: bpa-mul(p;x;y) top: Top nat: squash: T ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] p-adics: p-adics(p) so_lambda: λ2x.t[x] subtract: m int_seg: {i..j-} lelt: i ≤ j < k so_apply: x[s]
Lemmas referenced :  subtype_base_sq int_subtype_base equal-padics pa-mul_wf bpa-equiv-iff-norm bpa-mul_wf decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf equal_wf bpa-equiv_wf basic-padic_wf int_upper_wf p-adics_wf p-mul_wf exp_wf2 squash_wf true_wf nat_plus_wf p-int_wf exp_add subtype_rel_self p-mul-int iff_weakening_equal p-adic-property nat_plus_properties nat_properties int_upper_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf le_wf p-mul-comm all_wf eqmod_wf nat_plus_subtype_nat less-iff-le condition-implies-le minus-add minus-one-mul minus-one-mul-top add-associates add-zero int_seg_wf int_seg_properties intformand_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_less_lemma p-mul-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination hypothesisEquality productElimination dependent_set_memberEquality setElimination rename because_Cache natural_numberEquality unionElimination independent_pairFormation lambdaFormation voidElimination sqequalRule applyEquality lambdaEquality isect_memberEquality voidEquality imageElimination universeEquality imageMemberEquality baseClosed hyp_replacement addEquality approximateComputation dependent_pairFormation int_eqEquality minusEquality applyLambdaEquality

Latex:
\mforall{}[p,q:\{2...\}].  \mforall{}[x1,y1,x2,y2:basic-padic(p)].
    (pa-mul(p;x1;y1)  =  pa-mul(q;x2;y2))  supposing 
          ((p  =  q)  and 
          bpa-equiv(p;x1;x2)  and 
          bpa-equiv(p;y1;y2))



Date html generated: 2018_05_21-PM-03_27_00
Last ObjectModification: 2018_05_19-AM-08_24_23

Theory : rings_1


Home Index