Nuprl Lemma : rng_hom_minus
∀[r,s:Rng]. ∀[f:|r| ⟶ |s|].  ∀[x:|r|]. (f[-r x] = (-s f[x]) ∈ |s|) supposing rng_hom_p(r;s;f)
Proof
Definitions occuring in Statement : 
rng_hom_p: rng_hom_p(r;s;f), 
rng: Rng, 
rng_minus: -r, 
rng_car: |r|, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
apply: f a, 
function: x:A ⟶ B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
rng_hom_p: rng_hom_p(r;s;f), 
and: P ∧ Q, 
rng: Rng, 
prop: ℙ, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
true: True, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
so_apply: x[s], 
infix_ap: x f y, 
rev_implies: P ⇐ Q
Lemmas referenced : 
rng_hom_zero, 
rng_car_wf, 
rng_hom_p_wf, 
rng_wf, 
rng_minus_wf, 
infix_ap_wf, 
rng_plus_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_plus_comm, 
rng_plus_inv, 
iff_weakening_equal, 
rng_plus_ac_1, 
rng_plus_zero
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
productElimination, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
setElimination, 
rename, 
functionExtensionality, 
applyEquality, 
because_Cache, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[r,s:Rng].  \mforall{}[f:|r|  {}\mrightarrow{}  |s|].    \mforall{}[x:|r|].  (f[-r  x]  =  (-s  f[x]))  supposing  rng\_hom\_p(r;s;f)
Date html generated:
2017_10_01-AM-08_18_23
Last ObjectModification:
2017_02_28-PM-02_03_17
Theory : rings_1
Home
Index