Nuprl Lemma : rng_sum_swap

[r:Rng]. ∀[k,m:ℕ]. ∀[F:ℕm ⟶ ℕk ⟶ |r|].
  ((Σ(r) 0 ≤ i < m. Σ(r) 0 ≤ j < k. F[i;j]) (r) 0 ≤ j < k. Σ(r) 0 ≤ i < m. F[i;j]) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_sum: rng_sum rng: Rng rng_car: |r| int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  or: P ∨ Q decidable: Dec(P) rng: Rng prop: and: P ∧ Q top: Top all: x:A. B[x] exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x] true: True so_apply: x[s] so_apply: x[s1;s2] so_lambda: λ2x.t[x] squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q infix_ap: y lelt: i ≤ j < k int_seg: {i..j-} so_lambda: λ2y.t[x; y]
Lemmas referenced :  rng_wf nat_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le rng_car_wf int_seg_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties rng_zero_wf rng_sum_wf equal_wf squash_wf true_wf rng_sum_unroll_base iff_weakening_equal rng_sum_unroll_hi rng_plus_zero rng_plus_wf lelt_wf decidable__lt int_seg_properties infix_ap_wf rng_sum_plus
Rules used in proof :  unionElimination because_Cache functionEquality axiomEquality independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution functionExtensionality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination dependent_set_memberEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[k,m:\mBbbN{}].  \mforall{}[F:\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  |r|].
    ((\mSigma{}(r)  0  \mleq{}  i  <  m.  \mSigma{}(r)  0  \mleq{}  j  <  k.  F[i;j])  =  (\mSigma{}(r)  0  \mleq{}  j  <  k.  \mSigma{}(r)  0  \mleq{}  i  <  m.  F[i;j]))



Date html generated: 2018_05_21-PM-03_15_09
Last ObjectModification: 2017_12_11-PM-05_05_44

Theory : rings_1


Home Index