Nuprl Lemma : rng_sum_swap
∀[r:Rng]. ∀[k,m:ℕ]. ∀[F:ℕm ⟶ ℕk ⟶ |r|].
  ((Σ(r) 0 ≤ i < m. Σ(r) 0 ≤ j < k. F[i;j]) = (Σ(r) 0 ≤ j < k. Σ(r) 0 ≤ i < m. F[i;j]) ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_sum: rng_sum, 
rng: Rng
, 
rng_car: |r|
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
or: P ∨ Q
, 
decidable: Dec(P)
, 
rng: Rng
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
infix_ap: x f y
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
rng_wf, 
nat_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
rng_car_wf, 
int_seg_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
rng_zero_wf, 
rng_sum_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_sum_unroll_base, 
iff_weakening_equal, 
rng_sum_unroll_hi, 
rng_plus_zero, 
rng_plus_wf, 
lelt_wf, 
decidable__lt, 
int_seg_properties, 
infix_ap_wf, 
rng_sum_plus
Rules used in proof : 
unionElimination, 
because_Cache, 
functionEquality, 
axiomEquality, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
functionExtensionality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
dependent_set_memberEquality
Latex:
\mforall{}[r:Rng].  \mforall{}[k,m:\mBbbN{}].  \mforall{}[F:\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  |r|].
    ((\mSigma{}(r)  0  \mleq{}  i  <  m.  \mSigma{}(r)  0  \mleq{}  j  <  k.  F[i;j])  =  (\mSigma{}(r)  0  \mleq{}  j  <  k.  \mSigma{}(r)  0  \mleq{}  i  <  m.  F[i;j]))
Date html generated:
2018_05_21-PM-03_15_09
Last ObjectModification:
2017_12_11-PM-05_05_44
Theory : rings_1
Home
Index