Nuprl Lemma : rng_when_thru_plus

[r:Rng]. ∀[b:𝔹]. ∀[p,q:|r|].  ((when b. (p +r q)) ((when b. p) +r (when b. q)) ∈ |r|)


Proof




Definitions occuring in Statement :  rng_when: rng_when rng: Rng rng_plus: +r rng_car: |r| bool: 𝔹 uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B grp: Group{i} mon: Mon imon: IMonoid prop: rng_when: rng_when add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) rng: Rng
Lemmas referenced :  mon_when_thru_op add_grp_of_rng_wf_a grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf rng_car_wf bool_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule lambdaEquality setElimination rename setEquality cumulativity isect_memberEquality axiomEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[b:\mBbbB{}].  \mforall{}[p,q:|r|].    ((when  b.  (p  +r  q))  =  ((when  b.  p)  +r  (when  b.  q)))



Date html generated: 2016_05_15-PM-00_29_09
Last ObjectModification: 2015_12_26-PM-11_58_25

Theory : rings_1


Home Index