Nuprl Lemma : sym_grp_is_swaps_a
∀n:{1...}. ∀p:Sym(n).
  ∃abs:{ab:ℕn × ℕn| fst(ab) < snd(ab)}  List. (p = (Π map(λab.let a,b = ab in txpose_perm(a;b);abs)) ∈ Sym(n))
Proof
Definitions occuring in Statement : 
mon_reduce: mon_reduce, 
txpose_perm: txpose_perm, 
sym_grp: Sym(n), 
perm_igrp: perm_igrp(T), 
map: map(f;as), 
list: T List, 
int_upper: {i...}, 
int_seg: {i..j-}, 
less_than: a < b, 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
set: {x:A| B[x]} , 
lambda: λx.A[x], 
spread: spread def, 
product: x:A × B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
sym_grp: Sym(n), 
uall: ∀[x:A]. B[x], 
int_upper: {i...}, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
prop: ℙ, 
pi1: fst(t), 
int_seg: {i..j-}, 
pi2: snd(t), 
so_lambda: λ2x.t[x], 
igrp: IGroup, 
imon: IMonoid, 
perm_igrp: perm_igrp(T), 
mk_igrp: mk_igrp(T;op;id;inv), 
grp_car: |g|, 
perm: Perm(T), 
so_apply: x[s], 
top: Top, 
mon_reduce: mon_reduce, 
grp_id: e, 
infix_ap: x f y, 
grp_op: *, 
gt: i > j, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
istype: istype(T)
Lemmas referenced : 
perm_wf, 
int_seg_wf, 
int_upper_wf, 
sym_grp_is_swaps, 
upper_subtype_nat, 
istype-false, 
exists_wf, 
list_wf, 
less_than_wf, 
equal_wf, 
mon_reduce_wf, 
perm_igrp_wf, 
map_wf, 
grp_car_wf, 
txpose_perm_wf, 
subtype_rel_self, 
list_induction, 
map_nil_lemma, 
istype-void, 
reduce_nil_lemma, 
map_cons_lemma, 
reduce_cons_lemma, 
list_subtype_base, 
product_subtype_base, 
set_subtype_base, 
lelt_wf, 
istype-int, 
int_subtype_base, 
le_wf, 
nil_wf, 
id_perm_wf, 
int_seg_properties, 
int_upper_properties, 
decidable__or, 
or_wf, 
equal-wf-base, 
decidable__lt, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformor_wf, 
intformless_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_or_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
cons_wf, 
pi1_wf, 
subtype_rel_product, 
pi2_wf, 
comp_perm_wf, 
squash_wf, 
true_wf, 
istype-universe, 
txpose_perm_id, 
iff_weakening_equal, 
perm_ident, 
txpose_perm_sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
productElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
setEquality, 
productEquality, 
because_Cache, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
productIsType, 
setIsType, 
independent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
dependent_pairFormation_alt, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
dependent_set_memberEquality_alt, 
independent_pairEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
instantiate
Latex:
\mforall{}n:\{1...\}.  \mforall{}p:Sym(n).
    \mexists{}abs:\{ab:\mBbbN{}n  \mtimes{}  \mBbbN{}n|  fst(ab)  <  snd(ab)\}    List.  (p  =  (\mPi{}  map(\mlambda{}ab.let  a,b  =  ab  in  txpose\_perm(a;b);abs))\000C)
 Date html generated: 
2019_10_16-PM-01_02_01
 Last ObjectModification: 
2018_10_08-PM-05_41_03
Theory : list_2
Home
Index