Nuprl Lemma : fset_of_mset_count_bound
∀s:DSet. ∀a:MSet{s}. ∀c:|s|.  ((c #∈ fset_of_mset(s;a)) ≤ 1)
Proof
Definitions occuring in Statement : 
fset_of_mset: fset_of_mset(s;a), 
mset_count: x #∈ a, 
mset: MSet{s}, 
le: A ≤ B, 
all: ∀x:A. B[x], 
natural_number: $n, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
implies: P ⇒ Q, 
prop: ℙ, 
guard: {T}, 
dset: DSet, 
nat: ℕ, 
fset_of_mset: fset_of_mset(s;a), 
top: Top, 
mset_union_mon: <MSet{s},⋃,0>, 
grp_id: e, 
pi2: snd(t), 
pi1: fst(t), 
null_mset: 0{s}, 
mset_count: x #∈ a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
squash: ↓T, 
grp_car: |g|, 
mset: MSet{s}, 
quotient: x,y:A//B[x; y], 
true: True, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
mset_inj: mset_inj{s}(x), 
mk_mset: mk_mset(as), 
infix_ap: x f y, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
grp_op: *, 
uiff: uiff(P;Q), 
cand: A c∧ B
Lemmas referenced : 
mset_ind_a, 
le_wf, 
mset_count_wf, 
fset_of_mset_wf, 
mset_wf, 
set_car_wf, 
dset_wf, 
sq_stable__le, 
mset_for_null_lemma, 
istype-void, 
count_nil_lemma, 
istype-false, 
squash_wf, 
true_wf, 
istype-int, 
mset_for_mset_inj, 
mset_union_mon_wf, 
abmonoid_subtype_iabmonoid, 
mset_inj_wf, 
subtype_rel_self, 
nat_wf, 
iff_weakening_equal, 
count_cons_lemma, 
b2i_bounds, 
set_eq_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
mset_for_mset_sum, 
mset_count_union, 
imax_lb
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
because_Cache, 
hypothesis, 
applyEquality, 
natural_numberEquality, 
universeIsType, 
independent_functionElimination, 
inhabitedIsType, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
productElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality
Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.  \mforall{}c:|s|.    ((c  \#\mmember{}  fset\_of\_mset(s;a))  \mleq{}  1)
Date html generated:
2019_10_16-PM-01_06_45
Last ObjectModification:
2018_10_08-PM-05_41_01
Theory : mset
Home
Index