Nuprl Lemma : mset_fmon_wf
∀s:DSet. (mset_fmon(s) ∈ FAbMon(s))
Proof
Definitions occuring in Statement : 
mset_fmon: mset_fmon(s), 
free_abmonoid: FAbMon(S), 
all: ∀x:A. B[x], 
member: t ∈ T, 
dset: DSet
Definitions unfolded in proof : 
mset_fmon: mset_fmon(s), 
free_abmonoid: FAbMon(S), 
all: ∀x:A. B[x], 
member: t ∈ T, 
tlambda: λx:T. b[x], 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
dset: DSet, 
abmonoid: AbMon, 
mon: Mon, 
so_lambda: λ2x.t[x], 
monoid_hom: MonHom(M1,M2), 
so_apply: x[s], 
unique_set: {!x:T | P[x]}, 
and: P ∧ Q, 
cand: A c∧ B, 
compose: f o g, 
squash: ↓T, 
prop: ℙ, 
true: True, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
mset_mon: mset_mon{s}, 
grp_car: |g|, 
pi1: fst(t), 
monoid_hom_p: IsMonHom{M1,M2}(f), 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
grp_op: *, 
pi2: snd(t), 
grp_id: e, 
infix_ap: x f y, 
top: Top
Lemmas referenced : 
mset_mon_wf, 
mset_inj_wf, 
set_car_wf, 
grp_car_wf, 
abmonoid_wf, 
unique_set_wf, 
monoid_hom_wf, 
equal_wf, 
compose_wf, 
dset_wf, 
squash_wf, 
true_wf, 
mset_for_mset_inj, 
abmonoid_subtype_iabmonoid, 
iff_weakening_equal, 
mset_wf, 
all_wf, 
mset_for_wf, 
mset_for_null_lemma, 
monoid_hom_p_wf, 
mset_for_mset_sum, 
infix_ap_wf, 
grp_op_wf, 
grp_id_wf, 
mset_for_functionality, 
assert_wf, 
mset_mem_wf, 
dist_hom_over_mset_for, 
mset_fact, 
monoid_hom_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
dependent_pairEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
applyEquality, 
isectElimination, 
setElimination, 
rename, 
functionEquality, 
cumulativity, 
universeEquality, 
functionExtensionality, 
productEquality, 
dependent_set_memberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isect_memberFormation, 
axiomEquality
Latex:
\mforall{}s:DSet.  (mset\_fmon(s)  \mmember{}  FAbMon(s))
 Date html generated: 
2017_10_01-AM-09_59_37
 Last ObjectModification: 
2017_03_03-PM-01_00_44
Theory : mset
Home
Index