Nuprl Lemma : rev_permf_wf
∀n:ℕ. (rev_permf(n) ∈ ℕn ⟶ ℕn)
Proof
Definitions occuring in Statement : 
rev_permf: rev_permf(n), 
int_seg: {i..j-}, 
nat: ℕ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
rev_permf: rev_permf(n), 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
guard: {T}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ
Lemmas referenced : 
subtract_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
lelt_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
lambdaEquality, 
dependent_set_memberEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
hypothesisEquality, 
independent_pairFormation, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}n:\mBbbN{}.  (rev\_permf(n)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n)
 Date html generated: 
2018_05_22-AM-07_44_33
 Last ObjectModification: 
2018_05_19-AM-08_33_20
Theory : perms_1
Home
Index