Nuprl Lemma : oal_le_char
∀s:LOSet. ∀g:OGrp.  ((ps,qs:|oal(s;g)|. ps ≤{s,g} qs) <≡>{|oal(s;g)|} ((ps,qs:|oal(s;g)|. ps << qs)o))
Proof
Definitions occuring in Statement : 
oal_lt: ps << qs, 
oal_le: ps ≤{s,g} qs, 
oalist: oal(a;b), 
binrel_eqv: E <≡>{T} E', 
all: ∀x:A. B[x], 
ocgrp: OGrp, 
loset: LOSet, 
set_car: |p|, 
refl_cl: Eo, 
ab_binrel: x,y:T. E[x; y]
Definitions unfolded in proof : 
binrel_eqv: E <≡>{T} E', 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
refl_cl: Eo, 
ab_binrel: x,y:T. E[x; y], 
oal_le: ps ≤{s,g} qs, 
oal_ble: ps ≤≤b qs, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
ocgrp: OGrp, 
uiff: uiff(P;Q), 
infix_ap: x f y
Lemmas referenced : 
set_car_wf, 
oalist_wf, 
ocmon_subtype_abdmonoid, 
ocgrp_subtype_ocmon, 
subtype_rel_transitivity, 
ocgrp_wf, 
ocmon_wf, 
abdmonoid_wf, 
loset_wf, 
ocgrp_abdgrp, 
assert_wf, 
bor_wf, 
infix_ap_wf, 
bool_wf, 
set_eq_wf, 
oal_blt_wf, 
iff_transitivity, 
or_wf, 
equal_wf, 
oal_lt_wf, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_dset_eq, 
assert_of_oal_blt
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
because_Cache, 
independent_pairFormation, 
lambdaEquality, 
setElimination, 
rename, 
independent_functionElimination, 
orFunctionality, 
productElimination
Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.
    ((ps,qs:|oal(s;g)|.  ps  \mleq{}\{s,g\}  qs)  <\mequiv{}>\{|oal(s;g)|\}  ((ps,qs:|oal(s;g)|.  ps  <<  qs)\msupzero{}))
Date html generated:
2017_10_01-AM-10_04_26
Last ObjectModification:
2017_03_03-PM-01_07_57
Theory : polynom_2
Home
Index