Nuprl Lemma : csm-I-path
∀X,Delta:CubicalSet. ∀s:Delta ⟶ X. ∀A:{X ⊢ _}. ∀a,b:{X ⊢ _:A}. ∀I:Cname List. ∀alpha:Delta(I).
  (I-path(Delta;(A)s;(a)s;(b)s;I;alpha) = I-path(X;A;a;b;I;(s)alpha) ∈ Type)
Proof
Definitions occuring in Statement : 
I-path: I-path(X;A;a;b;I;alpha), 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:AF}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
csm-ap: (s)x, 
I-cube: X(I), 
cube-set-map: A ⟶ B, 
cubical-set: CubicalSet, 
coordinate_name: Cname, 
list: T List, 
all: ∀x:A. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
I-path: I-path(X;A;a;b;I;alpha), 
all: ∀x:A. B[x], 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
pi1: fst(t), 
cubical-type-at: A(a), 
named-path: named-path(X;A;a;b;I;alpha;z), 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
guard: {T}, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
true: True, 
squash: ↓T, 
name-path-endpoints: name-path-endpoints(X;A;a;b;I;alpha;z;omega), 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:AF}, 
int_seg: {i..j-}, 
coordinate_name: Cname, 
int_upper: {i...}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False
Lemmas referenced : 
cubical-set_wf, 
cube-set-map_wf, 
cubical-term_wf, 
list_wf, 
I-cube_wf, 
l_member_wf, 
not_wf, 
coordinate_name_wf, 
set_wf, 
csm-ap-type_wf, 
iff_weakening_equal, 
csm-ap-restriction, 
iota_wf, 
cube-set-restriction_wf, 
csm-ap_wf, 
true_wf, 
squash_wf, 
equal_wf, 
cons_wf, 
csm-cubical-type-ap-morph, 
cubical-type-at_wf, 
subtype_rel_self, 
istype-universe, 
cube-set-restriction-comp, 
face-map_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
iota-identity, 
cube-set-restriction-id, 
cubical-type-ap-morph_wf, 
subtype_rel-equal
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
productEquality, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productElimination, 
rename, 
setElimination, 
setEquality, 
independent_functionElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
dependent_functionElimination, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
functionExtensionality, 
applyEquality, 
Error :memTop, 
lambdaEquality_alt, 
universeIsType, 
instantiate, 
independent_pairFormation, 
inhabitedIsType, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
voidElimination, 
productIsType, 
equalityIstype, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}X,Delta:CubicalSet.  \mforall{}s:Delta  {}\mrightarrow{}  X.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:A\}.  \mforall{}I:Cname  List.  \mforall{}alpha:Delta(I).
    (I-path(Delta;(A)s;(a)s;(b)s;I;alpha)  =  I-path(X;A;a;b;I;(s)alpha))
 Date html generated: 
2020_05_21-AM-11_13_28
 Last ObjectModification: 
2020_01_15-PM-01_14_19
Theory : cubical!sets
Home
Index