Nuprl Lemma : poset-cat-arrow-iff
∀[I:Cname List]. ∀[x,y:cat-ob(poset-cat(I))].  uiff(cat-arrow(poset-cat(I)) x y;{∀i:nameset(I). ((x i) ≤ (y i))})
Proof
Definitions occuring in Statement : 
poset-cat: poset-cat(J), 
nameset: nameset(L), 
coordinate_name: Cname, 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
list: T List, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
guard: {T}, 
le: A ≤ B, 
all: ∀x:A. B[x], 
apply: f a
Definitions unfolded in proof : 
guard: {T}, 
poset-cat: poset-cat(J), 
cat-arrow: cat-arrow(C), 
cat-ob: cat-ob(C), 
pi1: fst(t), 
pi2: snd(t), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
name-morph: name-morph(I;J), 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
assert_of_le_int, 
nameset_wf, 
less_than'_wf, 
all_wf, 
assert_wf, 
le_int_wf, 
assert_witness, 
le_wf, 
name-morph_wf, 
nil_wf, 
coordinate_name_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
productElimination, 
independent_isectElimination, 
lambdaEquality, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination
Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y:cat-ob(poset-cat(I))].
    uiff(cat-arrow(poset-cat(I))  x  y;\{\mforall{}i:nameset(I).  ((x  i)  \mleq{}  (y  i))\})
Date html generated:
2016_06_16-PM-06_52_36
Last ObjectModification:
2015_12_28-PM-04_22_50
Theory : cubical!sets
Home
Index