Nuprl Lemma : poset-extend-unique

[C:SmallCategory]. ∀[I:Cname List]. ∀[L:name-morph(I;[]) ⟶ cat-ob(C)]. ∀[E:i:nameset(I)
                                                                             ⟶ c:{c:name-morph(I;[])| (c i) 0 ∈ ℕ2} 
                                                                             ⟶ (cat-arrow(C) (L c) (L flip(c;i)))].
[F,G:Functor(poset-cat(I);C)].
  (F G ∈ Functor(poset-cat(I);C)) supposing (poset-functor-extends(C;I;L;E;G) and poset-functor-extends(C;I;L;E;F))


Proof




Definitions occuring in Statement :  poset-functor-extends: poset-functor-extends(C;I;L;E;F) poset-cat: poset-cat(J) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname cat-functor: Functor(C1;C2) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory nil: [] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] name-morph: name-morph(I;J) poset-cat: poset-cat(J) pi1: fst(t) cat-ob: cat-ob(C) subtype_rel: A ⊆B prop: and: P ∧ Q top: Top all: x:A. B[x] poset-functor-extends: poset-functor-extends(C;I;L;E;F) cat-functor: Functor(C1;C2) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) nat: implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True squash: T cand: c∧ B ge: i ≥  uiff: uiff(P;Q)
Lemmas referenced :  small-category_wf list_wf name-morph-flip_wf extd-nameset-nil int_seg_wf equal-wf-T-base cat-functor_wf nameset_wf poset-functor-extends_wf cat-comp_wf cat-id_wf all_wf cat-arrow_wf poset-cat_wf subtype_rel_self cat-ob_wf coordinate_name_wf nil_wf name-morph_wf equal_wf and_wf arrow_pair_lemma ob_pair_lemma int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermVar_wf intformle_wf intformnot_wf satisfiable-full-omega-tt nat_wf decidable__le poset-cat-dist_wf iff_weakening_equal true_wf squash_wf poset-cat-arrow-unique subtype_rel-equal subtype_rel_dep_function istype-universe int_term_value_subtract_lemma itermSubtract_wf subtract_wf le_wf less_than_wf ge_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf intformand_wf nat_properties poset-cat-dist-zero poset-cat-arrow-cases equal_functionality_wrt_subtype_rel2 poset-cat-arrow-equals poset-cat-dist-add false_wf int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf add-is-int-iff
Rules used in proof :  baseClosed natural_numberEquality setEquality axiomEquality lambdaEquality productEquality because_Cache applyEquality applyLambdaEquality hypothesisEquality functionEquality isectElimination independent_pairFormation equalitySymmetry equalityTransitivity functionExtensionality dependent_pairEquality hypothesis voidEquality voidElimination isect_memberEquality dependent_functionElimination extract_by_obid sqequalRule productElimination dependent_set_memberEquality rename thin setElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution computeAll intEquality int_eqEquality dependent_pairFormation independent_isectElimination unionElimination independent_functionElimination hyp_replacement imageMemberEquality universeEquality imageElimination lambdaFormation dependent_set_memberEquality_alt productIsType equalityIsType1 inhabitedIsType lambdaEquality_alt instantiate universeIsType lambdaFormation_alt intWeakElimination cumulativity comment closedConclusion baseApply pointwiseFunctionality promote_hyp

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[L:name-morph(I;[])  {}\mrightarrow{}  cat-ob(C)].
\mforall{}[E:i:nameset(I)  {}\mrightarrow{}  c:\{c:name-morph(I;[])|  (c  i)  =  0\}    {}\mrightarrow{}  (cat-arrow(C)  (L  c)  (L  flip(c;i)))].
\mforall{}[F,G:Functor(poset-cat(I);C)].
    (F  =  G)  supposing  (poset-functor-extends(C;I;L;E;G)  and  poset-functor-extends(C;I;L;E;F))



Date html generated: 2019_11_05-PM-00_34_56
Last ObjectModification: 2018_11_07-AM-11_39_20

Theory : cubical!sets


Home Index