Nuprl Lemma : poset-extend-unique
∀[C:SmallCategory]. ∀[I:Cname List]. ∀[L:name-morph(I;[]) ⟶ cat-ob(C)]. ∀[E:i:nameset(I)
                                                                             ⟶ c:{c:name-morph(I;[])| (c i) = 0 ∈ ℕ2} 
                                                                             ⟶ (cat-arrow(C) (L c) (L flip(c;i)))].
∀[F,G:Functor(poset-cat(I);C)].
  (F = G ∈ Functor(poset-cat(I);C)) supposing (poset-functor-extends(C;I;L;E;G) and poset-functor-extends(C;I;L;E;F))
Proof
Definitions occuring in Statement : 
poset-functor-extends: poset-functor-extends(C;I;L;E;F)
, 
poset-cat: poset-cat(J)
, 
name-morph-flip: flip(f;y)
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
cat-functor: Functor(C1;C2)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
name-morph: name-morph(I;J)
, 
poset-cat: poset-cat(J)
, 
pi1: fst(t)
, 
cat-ob: cat-ob(C)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
all: ∀x:A. B[x]
, 
poset-functor-extends: poset-functor-extends(C;I;L;E;F)
, 
cat-functor: Functor(C1;C2)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
uiff: uiff(P;Q)
Lemmas referenced : 
small-category_wf, 
list_wf, 
name-morph-flip_wf, 
extd-nameset-nil, 
int_seg_wf, 
equal-wf-T-base, 
cat-functor_wf, 
nameset_wf, 
poset-functor-extends_wf, 
cat-comp_wf, 
cat-id_wf, 
all_wf, 
cat-arrow_wf, 
poset-cat_wf, 
subtype_rel_self, 
cat-ob_wf, 
coordinate_name_wf, 
nil_wf, 
name-morph_wf, 
equal_wf, 
and_wf, 
arrow_pair_lemma, 
ob_pair_lemma, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
nat_wf, 
decidable__le, 
poset-cat-dist_wf, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
poset-cat-arrow-unique, 
subtype_rel-equal, 
subtype_rel_dep_function, 
istype-universe, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
le_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
intformand_wf, 
nat_properties, 
poset-cat-dist-zero, 
poset-cat-arrow-cases, 
equal_functionality_wrt_subtype_rel2, 
poset-cat-arrow-equals, 
poset-cat-dist-add, 
false_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
itermAdd_wf, 
intformeq_wf, 
add-is-int-iff
Rules used in proof : 
baseClosed, 
natural_numberEquality, 
setEquality, 
axiomEquality, 
lambdaEquality, 
productEquality, 
because_Cache, 
applyEquality, 
applyLambdaEquality, 
hypothesisEquality, 
functionEquality, 
isectElimination, 
independent_pairFormation, 
equalitySymmetry, 
equalityTransitivity, 
functionExtensionality, 
dependent_pairEquality, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
extract_by_obid, 
sqequalRule, 
productElimination, 
dependent_set_memberEquality, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
computeAll, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_isectElimination, 
unionElimination, 
independent_functionElimination, 
hyp_replacement, 
imageMemberEquality, 
universeEquality, 
imageElimination, 
lambdaFormation, 
dependent_set_memberEquality_alt, 
productIsType, 
equalityIsType1, 
inhabitedIsType, 
lambdaEquality_alt, 
instantiate, 
universeIsType, 
lambdaFormation_alt, 
intWeakElimination, 
cumulativity, 
comment, 
closedConclusion, 
baseApply, 
pointwiseFunctionality, 
promote_hyp
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[L:name-morph(I;[])  {}\mrightarrow{}  cat-ob(C)].
\mforall{}[E:i:nameset(I)  {}\mrightarrow{}  c:\{c:name-morph(I;[])|  (c  i)  =  0\}    {}\mrightarrow{}  (cat-arrow(C)  (L  c)  (L  flip(c;i)))].
\mforall{}[F,G:Functor(poset-cat(I);C)].
    (F  =  G)  supposing  (poset-functor-extends(C;I;L;E;G)  and  poset-functor-extends(C;I;L;E;F))
Date html generated:
2019_11_05-PM-00_34_56
Last ObjectModification:
2018_11_07-AM-11_39_20
Theory : cubical!sets
Home
Index