Nuprl Lemma : comp-op_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢_}].  (comp-op(Gamma;A) ∈ 𝕌{[i j]'})


Proof




Definitions occuring in Statement :  comp-op: comp-op(Gamma;A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T comp-op: comp-op(Gamma;A) subtype_rel: A ⊆B prop: all: x:A. B[x] uimplies: supposing a not: ¬A implies:  Q false: False
Lemmas referenced :  fset_wf nat_wf not_wf fset-member_wf int-deq_wf istype-nat I_cube_wf add-name_wf face-presheaf_wf2 cubical-term_wf cubical-subset_wf cube-set-restriction_wf nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf cubical-path-0_wf istype-void cubical-path-1_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality lambdaEquality_alt cumulativity hypothesisEquality universeIsType universeEquality setEquality because_Cache inhabitedIsType equalityTransitivity equalitySymmetry lambdaFormation_alt setElimination rename instantiate independent_isectElimination dependent_functionElimination dependent_set_memberEquality_alt functionIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}j  \_\}].    (comp-op(Gamma;A)  \mmember{}  \mBbbU{}\{[i  |  j]'\})



Date html generated: 2020_05_20-PM-03_48_40
Last ObjectModification: 2020_04_09-AM-11_17_25

Theory : cubical!type!theory


Home Index