Nuprl Lemma : comp-op_wf
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢j _}].  (comp-op(Gamma;A) ∈ 𝕌{[i | j]'})
Proof
Definitions occuring in Statement : 
comp-op: comp-op(Gamma;A)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
comp-op: comp-op(Gamma;A)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
Lemmas referenced : 
fset_wf, 
nat_wf, 
not_wf, 
fset-member_wf, 
int-deq_wf, 
istype-nat, 
I_cube_wf, 
add-name_wf, 
face-presheaf_wf2, 
cubical-term_wf, 
cubical-subset_wf, 
cube-set-restriction_wf, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
cubical-path-0_wf, 
istype-void, 
cubical-path-1_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
cumulativity, 
hypothesisEquality, 
universeIsType, 
universeEquality, 
setEquality, 
because_Cache, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
setElimination, 
rename, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
functionIsType, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}j  \_\}].    (comp-op(Gamma;A)  \mmember{}  \mBbbU{}\{[i  |  j]'\})
Date html generated:
2020_05_20-PM-03_48_40
Last ObjectModification:
2020_04_09-AM-11_17_25
Theory : cubical!type!theory
Home
Index