Nuprl Lemma : context-subset-subtype

[Gamma:j⊢]. ∀[phi1,phi2:{Gamma ⊢ _:𝔽}].
  {Gamma, phi1 ⊢ _} ⊆{Gamma, phi2 ⊢ _} 
  supposing ∀I:fset(ℕ). ∀rho:Gamma(I).
              ((phi2(rho) 1 ∈ Point(face_lattice(I)))  (phi1(rho) 1 ∈ Point(face_lattice(I))))


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} face_lattice: face_lattice(I) I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] implies:  Q equal: t ∈ T lattice-1: 1 lattice-point: Point(l)
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a subtype_rel: A ⊆B member: t ∈ T context-subset: Gamma, phi all: x:A. B[x] so_lambda: λ2x.t[x] prop: cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt so_apply: x[s] cubical-type: {X ⊢ _} implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  I_cube_pair_redex_lemma subtype_rel_sets_simple I_cube_wf equal_wf lattice-point_wf face_lattice_wf cubical-term-at_wf face-type_wf subtype_rel_self lattice-1_wf cubical-type_wf context-subset_wf fset_wf nat_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf cubical-term_wf cubical_set_wf subtype_rel_dep_function istype-universe names-hom_wf context-subset-restriction cube-set-restriction_wf nh-id_wf subtype_rel-equal squash_wf true_wf cube-set-restriction-id iff_weakening_equal nh-comp_wf cube-set-restriction-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaEquality_alt cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis lambdaFormation_alt hypothesisEquality instantiate isectElimination cumulativity applyEquality because_Cache universeIsType independent_isectElimination setElimination rename productElimination dependent_set_memberEquality_alt functionIsType equalityIstype productEquality isectEquality inhabitedIsType equalityTransitivity equalitySymmetry dependent_pairEquality_alt functionExtensionality universeEquality independent_pairFormation promote_hyp productIsType imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi1,phi2:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    \{Gamma,  phi1  \mvdash{}  \_\}  \msubseteq{}r  \{Gamma,  phi2  \mvdash{}  \_\} 
    supposing  \mforall{}I:fset(\mBbbN{}).  \mforall{}rho:Gamma(I).    ((phi2(rho)  =  1)  {}\mRightarrow{}  (phi1(rho)  =  1))



Date html generated: 2020_05_20-PM-02_51_25
Last ObjectModification: 2020_04_06-AM-10_49_13

Theory : cubical!type!theory


Home Index