Nuprl Lemma : csm-comp-structure-id
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ Compositon(A)]. ∀[tau:Gamma j⟶ Gamma].
  (cA)tau = cA ∈ Gamma ⊢ Compositon(A) supposing tau = 1(Gamma) ∈ Gamma j⟶ Gamma
Proof
Definitions occuring in Statement : 
csm-comp-structure: (cA)tau, 
composition-structure: Gamma ⊢ Compositon(A), 
cubical-type: {X ⊢ _}, 
csm-id: 1(X), 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
and: P ∧ Q, 
member: t ∈ T, 
squash: ↓T, 
true: True, 
csm-comp-structure: (cA)tau, 
interval-type: 𝕀, 
csm-comp: G o F, 
compose: f o g, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
composition-structure: Gamma ⊢ Compositon(A), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
csm-id-adjoin: [u], 
csm-id: 1(X)
Lemmas referenced : 
composition-structure_wf, 
csm-comp-structure_wf, 
csm-id_wf, 
cube_set_map_wf, 
cubical-type_wf, 
cubical_set_wf, 
csm-ap-id-type, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-ap-type_wf, 
subtype_rel_self, 
iff_weakening_equal, 
constrained-cubical-term_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
csm-ap-term_wf, 
context-subset_wf, 
thin-context-subset-adjoin, 
cubical-term_wf, 
csm-context-subset-subtype3, 
face-type_wf, 
uniform-comp-function_wf, 
csm-id-comp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
hypothesis, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
hypothesisEquality, 
applyLambdaEquality, 
thin, 
applyEquality, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
universeIsType, 
instantiate, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
functionExtensionality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  Compositon(A)].  \mforall{}[tau:Gamma  j{}\mrightarrow{}  Gamma].
    (cA)tau  =  cA  supposing  tau  =  1(Gamma)
Date html generated:
2020_05_20-PM-04_36_04
Last ObjectModification:
2020_04_17-AM-01_04_21
Theory : cubical!type!theory
Home
Index