Nuprl Lemma : csm-cubical-isect
∀X,Delta:CubicalSet. ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀s:Delta ⟶ X.  ((⋂A B)s = ⋂(A)s (B)(s o p;q) ∈ {Delta ⊢ _})
Proof
Definitions occuring in Statement : 
cubical-isect: ⋂A B
, 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-type: {X ⊢ _}
, 
cc-snd: q
, 
csm-ap-type: (AF)s
, 
cc-fst: p
, 
csm-comp: G o F
, 
csm-ap: (s)x
, 
compose: f o g
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
cubical-isect: ⋂A B
, 
cubical-isect-family: cubical-isect-family(X;A;B;I;a)
Lemmas referenced : 
cubical-type-equal, 
csm-ap-type_wf, 
cubical-isect_wf, 
cube-context-adjoin_wf, 
csm-adjoin_wf, 
csm-comp_wf, 
cc-fst_wf, 
cc-snd_wf, 
cube_set_map_wf, 
cubical-type_wf, 
cubical_set_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
csm-cubical-isect-family, 
cubical-isect-family_wf, 
csm-ap_wf, 
names-hom_wf, 
cubical-isect-family-comp, 
cube-set-restriction_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
independent_isectElimination, 
dependent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
functionEquality, 
functionExtensionality
Latex:
\mforall{}X,Delta:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.  \mforall{}s:Delta  {}\mrightarrow{}  X.    ((\mcap{}A  B)s  =  \mcap{}(A)s  (B)(s  o  p;q))
Date html generated:
2016_10_28-AM-11_16_38
Last ObjectModification:
2016_07_21-AM-11_49_14
Theory : cubical!type!theory
Home
Index