Nuprl Lemma : csm-cubical-isect

X,Delta:CubicalSet. ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀s:Delta ⟶ X.  ((⋂B)s = ⋂(A)s (B)(s p;q) ∈ {Delta ⊢ _})


Proof




Definitions occuring in Statement :  cubical-isect: B csm-adjoin: (s;u) cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} cc-snd: q csm-ap-type: (AF)s cc-fst: p csm-comp: F csm-ap: (s)x compose: g subtype_rel: A ⊆B uimplies: supposing a cubical-isect: B cubical-isect-family: cubical-isect-family(X;A;B;I;a)
Lemmas referenced :  cubical-type-equal csm-ap-type_wf cubical-isect_wf cube-context-adjoin_wf csm-adjoin_wf csm-comp_wf cc-fst_wf cc-snd_wf cube_set_map_wf cubical-type_wf cubical_set_wf I_cube_wf fset_wf nat_wf csm-cubical-isect-family cubical-isect-family_wf csm-ap_wf names-hom_wf cubical-isect-family-comp cube-set-restriction_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache setElimination rename productElimination sqequalRule equalityTransitivity equalitySymmetry applyEquality independent_isectElimination dependent_pairEquality lambdaEquality dependent_functionElimination functionEquality functionExtensionality

Latex:
\mforall{}X,Delta:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.  \mforall{}s:Delta  {}\mrightarrow{}  X.    ((\mcap{}A  B)s  =  \mcap{}(A)s  (B)(s  o  p;q))



Date html generated: 2016_10_28-AM-11_16_38
Last ObjectModification: 2016_07_21-AM-11_49_14

Theory : cubical!type!theory


Home Index