Nuprl Lemma : csm-cubical-isect-family
∀X,Delta:⊢. ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀s:Delta ⟶ X. ∀I:fset(ℕ). ∀a:Delta(I).
  (cubical-isect-family(X;A;B;I;(s)a) = cubical-isect-family(Delta;(A)s;(B)(s o p;q);I;a) ∈ Type)
Proof
Definitions occuring in Statement : 
cubical-isect-family: cubical-isect-family(X;A;B;I;a), 
csm-adjoin: (s;u), 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
csm-comp: G o F, 
csm-ap: (s)x, 
cube_set_map: A ⟶ B, 
I_cube: A(I), 
cubical_set: CubicalSet, 
fset: fset(T), 
nat: ℕ, 
all: ∀x:A. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
cubical-isect-family: cubical-isect-family(X;A;B;I;a), 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
cube-set-restriction: f(s), 
pi2: snd(t), 
cube-context-adjoin: X.A, 
cc-adjoin-cube: (v;u), 
pi1: fst(t)
Lemmas referenced : 
csm-comp_wf, 
cube-context-adjoin_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
cc-snd_wf, 
csm-ap-type-at, 
csm-adjoin-ap, 
csm_comp_fst_adjoin_cube_lemma, 
cc_snd_adjoin_cube_lemma, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
names-hom_wf, 
cubical-type-at_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-type_wf, 
cubical_set_wf, 
csm-ap-restriction, 
cc-adjoin-cube_wf, 
istype-cubical-type-at, 
csm-ap_wf, 
cube-set-restriction_wf, 
subtype_rel_self, 
iff_weakening_equal, 
cube_set_map_wf, 
cc-adjoin-cube-restriction, 
cubical-type-ap-morph_wf, 
subtype_rel-equal, 
csm-cubical-type-ap-morph, 
cube-set-restriction-comp, 
nh-comp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setEquality, 
functionEquality, 
because_Cache, 
sqequalRule, 
Error :memTop, 
dependent_functionElimination, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
universeEquality, 
isectEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
inhabitedIsType, 
equalityIstype, 
hyp_replacement, 
isect_memberEquality_alt
Latex:
\mforall{}X,Delta:\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.  \mforall{}s:Delta  {}\mrightarrow{}  X.  \mforall{}I:fset(\mBbbN{}).  \mforall{}a:Delta(I).
    (cubical-isect-family(X;A;B;I;(s)a)  =  cubical-isect-family(Delta;(A)s;(B)(s  o  p;q);I;a))
Date html generated:
2020_05_21-AM-10_47_29
Last ObjectModification:
2020_05_02-PM-10_42_01
Theory : cubical!type!theory
Home
Index