Nuprl Lemma : csm-equiv-path1

[G:j⊢]. ∀[A,B:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(A;B)}]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((equiv-path1(G;A;B;f))s+ equiv-path1(H;(A)s;(B)s;(f)s) ∈ {H.𝕀 ⊢ _})


Proof




Definitions occuring in Statement :  equiv-path1: equiv-path1(G;A;B;f) cubical-equiv: Equiv(T;A) interval-type: 𝕀 csm+: tau+ cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a equiv-path1: equiv-path1(G;A;B;f) cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) guard: {T} csm+: tau+ csm-comp: F cubical-type: {X ⊢ _} csm-ap: (s)x csm-adjoin: (s;u) pi1: fst(t) compose: g squash: T prop: true: True csm-ap-term: (t)s pi2: snd(t)
Lemmas referenced :  csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf_interval subset-cubical-type context-subset_wf context-subset-is-subset istype-cubical-term face-type_wf csm-glue-type face-or_wf face-zero_wf cc-snd_wf face-one_wf case-type_wf same-cubical-type-zero-and-one face-0_wf equiv-fun_wf cubical-equiv-by-cases_wf csm+_wf_interval cube_set_map_wf cubical-equiv_wf cubical-type_wf cubical_set_wf csm-equiv-fun glue-type_wf squash_wf true_wf cubical-fun_wf thin-context-subset q-csm+ csm-face-or csm-face-zero csm-face-one csm-case-type csm-cubical-equiv-by-cases
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut lambdaFormation_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate hypothesis applyEquality because_Cache independent_isectElimination sqequalRule equalityTransitivity equalitySymmetry dependent_functionElimination universeIsType inhabitedIsType setElimination rename productElimination Error :memTop,  lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(A;B)\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((equiv-path1(G;A;B;f))s+  =  equiv-path1(H;(A)s;(B)s;(f)s))



Date html generated: 2020_05_20-PM-07_26_34
Last ObjectModification: 2020_04_25-PM-10_12_28

Theory : cubical!type!theory


Home Index