Nuprl Lemma : csm-equiv-path1
∀[G:j⊢]. ∀[A,B:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(A;B)}]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((equiv-path1(G;A;B;f))s+ = equiv-path1(H;(A)s;(B)s;(f)s) ∈ {H.𝕀 ⊢ _})
Proof
Definitions occuring in Statement : 
equiv-path1: equiv-path1(G;A;B;f)
, 
cubical-equiv: Equiv(T;A)
, 
interval-type: 𝕀
, 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
equiv-path1: equiv-path1(G;A;B;f)
, 
cc-snd: q
, 
interval-type: 𝕀
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
constant-cubical-type: (X)
, 
guard: {T}
, 
csm+: tau+
, 
csm-comp: G o F
, 
cubical-type: {X ⊢ _}
, 
csm-ap: (s)x
, 
csm-adjoin: (s;u)
, 
pi1: fst(t)
, 
compose: f o g
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
csm-ap-term: (t)s
, 
pi2: snd(t)
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf_interval, 
subset-cubical-type, 
context-subset_wf, 
context-subset-is-subset, 
istype-cubical-term, 
face-type_wf, 
csm-glue-type, 
face-or_wf, 
face-zero_wf, 
cc-snd_wf, 
face-one_wf, 
case-type_wf, 
same-cubical-type-zero-and-one, 
face-0_wf, 
equiv-fun_wf, 
cubical-equiv-by-cases_wf, 
csm+_wf_interval, 
cube_set_map_wf, 
cubical-equiv_wf, 
cubical-type_wf, 
cubical_set_wf, 
csm-equiv-fun, 
glue-type_wf, 
squash_wf, 
true_wf, 
cubical-fun_wf, 
thin-context-subset, 
q-csm+, 
csm-face-or, 
csm-face-zero, 
csm-face-one, 
csm-case-type, 
csm-cubical-equiv-by-cases
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
lambdaFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
hypothesis, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
universeIsType, 
inhabitedIsType, 
setElimination, 
rename, 
productElimination, 
Error :memTop, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(A;B)\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((equiv-path1(G;A;B;f))s+  =  equiv-path1(H;(A)s;(B)s;(f)s))
Date html generated:
2020_05_20-PM-07_26_34
Last ObjectModification:
2020_04_25-PM-10_12_28
Theory : cubical!type!theory
Home
Index