Nuprl Lemma : csm-equivTerm
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}]. ∀[H:j⊢]. ∀[s:H j⟶ G].  ((equivTerm(G;A;B))s = equivTerm(H;(A)s;(B)s) ∈ {H ⊢ _:c𝕌})
Proof
Definitions occuring in Statement : 
equivTerm: equivTerm(G;A;B)
, 
cubical-universe: c𝕌
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
equivTerm: equivTerm(G;A;B)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
csm-ap-term_wf, 
cubical-universe_wf, 
csm-cubical-universe, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-type_wf, 
csm-cubical-equiv, 
universe-decode_wf, 
cubical-equiv_wf, 
subtype_rel_self, 
iff_weakening_equal, 
csm-universe-decode, 
csm-universe-encode, 
equiv-comp_wf, 
universe-comp-op_wf, 
universe-encode_wf, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cube_set_map_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
csm-equiv-comp, 
csm-composition_wf, 
csm-universe-comp-op, 
subtype_rel-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
Error :memTop, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
inhabitedIsType, 
dependent_functionElimination, 
hyp_replacement, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
applyLambdaEquality, 
setElimination, 
rename
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].    ((equivTerm(G;A;B))s  =  equivTerm(H;(A)s;(B)s))
Date html generated:
2020_05_20-PM-07_33_50
Last ObjectModification:
2020_04_30-AM-10_02_23
Theory : cubical!type!theory
Home
Index