Nuprl Lemma : csm-filling_term

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[u:{Gamma.𝕀(phi)p ⊢ _:A}].
[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ u[0]]}]. ∀[Delta:j⊢]. ∀[s:Delta j⟶ Gamma].
  ((fill cA [phi ⊢→ u] a0)s+ fill (cA)s+ [(phi)s ⊢→ (u)s+] (a0)s ∈ {Delta.𝕀 ⊢ _:(A)s+[((phi)s)p |⟶ (u)s+]})


Proof




Definitions occuring in Statement :  filling_term: fill cA [phi ⊢→ u] a0 csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B filling_term: fill cA [phi ⊢→ u] a0 guard: {T} csm-composition: (comp)sigma comp-op-to-comp-fun: cop-to-cfun(cA) csm-comp-structure: (cA)tau csm-ap: (s)x interval-type: 𝕀 csm+: tau+ csm-comp: F compose: g cc-snd: q cc-fst: p constant-cubical-type: (X) csm-ap-type: (AF)s csm-adjoin: (s;u)
Lemmas referenced :  csm-fill_term comp-op-to-comp-fun_wf2 cube-context-adjoin_wf interval-type_wf cubical-type-cumulativity2 cube_set_map_wf constrained-cubical-term_wf csm-ap-type_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 partial-term-0_wf cubical-term_wf context-subset_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf thin-context-subset composition-op_wf cubical-type_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache sqequalRule universeIsType inhabitedIsType Error :memTop,  equalityTransitivity equalitySymmetry

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
\mforall{}[u:\{Gamma.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}].  \mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].  \mforall{}[Delta:j\mvdash{}].
\mforall{}[s:Delta  j{}\mrightarrow{}  Gamma].
    ((fill  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0)s+  =  fill  (cA)s+  [(phi)s  \mvdash{}\mrightarrow{}  (u)s+]  (a0)s)



Date html generated: 2020_05_20-PM-04_53_48
Last ObjectModification: 2020_04_10-AM-11_32_27

Theory : cubical!type!theory


Home Index