Nuprl Lemma : csm-filling_term
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[u:{Gamma.𝕀, (phi)p ⊢ _:A}].
∀[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ u[0]]}]. ∀[Delta:j⊢]. ∀[s:Delta j⟶ Gamma].
  ((fill cA [phi ⊢→ u] a0)s+ = fill (cA)s+ [(phi)s ⊢→ (u)s+] (a0)s ∈ {Delta.𝕀 ⊢ _:(A)s+[((phi)s)p |⟶ (u)s+]})
Proof
Definitions occuring in Statement : 
filling_term: fill cA [phi ⊢→ u] a0
, 
csm-composition: (comp)sigma
, 
composition-op: Gamma ⊢ CompOp(A)
, 
partial-term-0: u[0]
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
filling_term: fill cA [phi ⊢→ u] a0
, 
guard: {T}
, 
csm-composition: (comp)sigma
, 
comp-op-to-comp-fun: cop-to-cfun(cA)
, 
csm-comp-structure: (cA)tau
, 
csm-ap: (s)x
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-comp: G o F
, 
compose: f o g
, 
cc-snd: q
, 
cc-fst: p
, 
constant-cubical-type: (X)
, 
csm-ap-type: (AF)s
, 
csm-adjoin: (s;u)
Lemmas referenced : 
csm-fill_term, 
comp-op-to-comp-fun_wf2, 
cube-context-adjoin_wf, 
interval-type_wf, 
cubical-type-cumulativity2, 
cube_set_map_wf, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-0, 
partial-term-0_wf, 
cubical-term_wf, 
context-subset_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf, 
thin-context-subset, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
because_Cache, 
sqequalRule, 
universeIsType, 
inhabitedIsType, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
\mforall{}[u:\{Gamma.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}].  \mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].  \mforall{}[Delta:j\mvdash{}].
\mforall{}[s:Delta  j{}\mrightarrow{}  Gamma].
    ((fill  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0)s+  =  fill  (cA)s+  [(phi)s  \mvdash{}\mrightarrow{}  (u)s+]  (a0)s)
Date html generated:
2020_05_20-PM-04_53_48
Last ObjectModification:
2020_04_10-AM-11_32_27
Theory : cubical!type!theory
Home
Index