Nuprl Lemma : csm-fill_term
∀[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)]. ∀[u:{Gamma.𝕀, (phi)p ⊢ _:A}].
∀[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ u[0]]}]. ∀[Delta:j⊢]. ∀[s:Delta j⟶ Gamma].
  ((fill cA [phi ⊢→ u] a0)s+ = fill (cA)s+ [(phi)s ⊢→ (u)s+] (a0)s ∈ {Delta.𝕀 ⊢ _:(A)s+[((phi)s)p |⟶ (u)s+]})
Proof
Definitions occuring in Statement : 
fill_term: fill cA [phi ⊢→ u] a0
, 
csm-comp-structure: (cA)tau
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
partial-term-0: u[0]
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
csm-ap-term: (t)s
, 
cc-fst: p
, 
cubical-term-at: u(a)
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-ap: (s)x
, 
cc-snd: q
, 
constant-cubical-type: (X)
, 
csm-ap-type: (AF)s
, 
csm-comp: G o F
, 
csm-adjoin: (s;u)
, 
pi1: fst(t)
, 
compose: f o g
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
cubical-type-at: A(a)
, 
face-type: 𝔽
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
same-cubical-type: Gamma ⊢ A = B
, 
guard: {T}
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
squash: ↓T
, 
cubical-type: {X ⊢ _}
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
pi2: snd(t)
, 
true: True
, 
partial-term-0: u[0]
, 
csm-comp-structure: (cA)tau
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
cubical_set: CubicalSet
, 
ps_context: __⊢
, 
cat-functor: Functor(C1;C2)
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-arrow: cat-arrow(C)
, 
type-cat: TypeCat
, 
cube-context-adjoin: X.A
, 
interval-presheaf: 𝕀
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
names-hom: I ⟶ J
, 
cat-comp: cat-comp(C)
, 
functor-arrow: arrow(F)
, 
cube-set-restriction: f(s)
, 
cubical-type-ap-morph: (u a f)
, 
dM-lift: dM-lift(I;J;f)
, 
free-dma-lift: free-dma-lift(T;eq;dm;eq2;f)
, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
fill_term: fill cA [phi ⊢→ u] a0
, 
filling-structure: Gamma ⊢ Filling(A)
, 
uniform-filling-function: uniform-filling-function{j:l, i:l}(Gamma;A;fill)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
comp-to-fill: comp-to-fill(Gamma;cA)
, 
csm-m: m
, 
cc-adjoin-cube: (v;u)
Lemmas referenced : 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
cubical-term-at_wf, 
subtype_rel_self, 
lattice-1_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
csm-ap-term-wf-subset, 
csm-ap-type_wf, 
csm+_wf_interval, 
context-subset_wf, 
csm-context-subset-subtype2, 
cube_set_map_wf, 
constrained-cubical-term_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
partial-term-0_wf, 
cubical-term_wf, 
thin-context-subset, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
squash_wf, 
true_wf, 
cubical-type-cumulativity, 
csm-id-adjoin_wf, 
interval-0_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
subset-cubical-term, 
context-subset-is-subset, 
fill_term_wf, 
csm-comp-structure-composition-function, 
csm+_wf, 
composition-function_wf, 
comp-to-fill_wf2, 
csm-id_wf, 
istype-universe, 
csm-ap-id-type, 
subset-cubical-type, 
iff_weakening_equal, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
lambdaFormation_alt, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
hypothesisEquality, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
equalityIstype, 
universeIsType, 
applyEquality, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
hyp_replacement, 
imageElimination, 
productElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
universeEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].
\mforall{}[u:\{Gamma.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}].  \mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].  \mforall{}[Delta:j\mvdash{}].
\mforall{}[s:Delta  j{}\mrightarrow{}  Gamma].
    ((fill  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0)s+  =  fill  (cA)s+  [(phi)s  \mvdash{}\mrightarrow{}  (u)s+]  (a0)s)
Date html generated:
2020_05_20-PM-04_48_20
Last ObjectModification:
2020_04_13-PM-09_43_47
Theory : cubical!type!theory
Home
Index