Nuprl Lemma : csm-fill_term

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)]. ∀[u:{Gamma.𝕀(phi)p ⊢ _:A}].
[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ u[0]]}]. ∀[Delta:j⊢]. ∀[s:Delta j⟶ Gamma].
  ((fill cA [phi ⊢→ u] a0)s+ fill (cA)s+ [(phi)s ⊢→ (u)s+] (a0)s ∈ {Delta.𝕀 ⊢ _:(A)s+[((phi)s)p |⟶ (u)s+]})


Proof




Definitions occuring in Statement :  fill_term: fill cA [phi ⊢→ u] a0 csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] face-term-implies: Gamma ⊢ (phi  psi) all: x:A. B[x] implies:  Q csm-ap-term: (t)s cc-fst: p cubical-term-at: u(a) interval-type: 𝕀 csm+: tau+ csm-ap: (s)x cc-snd: q constant-cubical-type: (X) csm-ap-type: (AF)s csm-comp: F csm-adjoin: (s;u) pi1: fst(t) compose: g member: t ∈ T subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a cubical-type-at: A(a) face-type: 𝔽 I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt same-cubical-type: Gamma ⊢ B guard: {T} constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} squash: T cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-id-adjoin: [u] csm-id: 1(X) pi2: snd(t) true: True partial-term-0: u[0] csm-comp-structure: (cA)tau composition-function: composition-function{j:l,i:l}(Gamma;A) cubical_set: CubicalSet ps_context: __⊢ cat-functor: Functor(C1;C2) cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) type-cat: TypeCat cube-context-adjoin: X.A interval-presheaf: 𝕀 dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) names-hom: I ⟶ J cat-comp: cat-comp(C) functor-arrow: arrow(F) cube-set-restriction: f(s) cubical-type-ap-morph: (u f) dM-lift: dM-lift(I;J;f) free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra-property free-dist-lattice-property lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum fill_term: fill cA [phi ⊢→ u] a0 filling-structure: Gamma ⊢ Filling(A) uniform-filling-function: uniform-filling-function{j:l, i:l}(Gamma;A;fill) iff: ⇐⇒ Q rev_implies:  Q comp-to-fill: comp-to-fill(Gamma;cA) csm-m: m cc-adjoin-cube: (v;u)
Lemmas referenced :  csm-ap-term_wf cube-context-adjoin_wf interval-type_wf face-type_wf csm-face-type cc-fst_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf subtype_rel_self lattice-1_wf I_cube_wf fset_wf nat_wf csm-ap-term-wf-subset csm-ap-type_wf csm+_wf_interval context-subset_wf csm-context-subset-subtype2 cube_set_map_wf constrained-cubical-term_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 partial-term-0_wf cubical-term_wf thin-context-subset composition-structure_wf cubical-type_wf cubical_set_wf squash_wf true_wf cubical-type-cumulativity csm-id-adjoin_wf interval-0_wf subset-cubical-term2 sub_cubical_set_self subset-cubical-term context-subset-is-subset fill_term_wf csm-comp-structure-composition-function csm+_wf composition-function_wf comp-to-fill_wf2 csm-id_wf istype-universe csm-ap-id-type subset-cubical-type iff_weakening_equal free-DeMorgan-algebra-property free-dist-lattice-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut lambdaFormation_alt sqequalRule hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin instantiate hypothesisEquality Error :memTop,  equalityTransitivity equalitySymmetry inhabitedIsType equalityIstype universeIsType applyEquality lambdaEquality_alt productEquality cumulativity isectEquality because_Cache independent_isectElimination setElimination rename dependent_functionElimination independent_functionElimination dependent_set_memberEquality_alt hyp_replacement imageElimination productElimination natural_numberEquality imageMemberEquality baseClosed applyLambdaEquality universeEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].
\mforall{}[u:\{Gamma.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}].  \mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  u[0]]\}].  \mforall{}[Delta:j\mvdash{}].
\mforall{}[s:Delta  j{}\mrightarrow{}  Gamma].
    ((fill  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0)s+  =  fill  (cA)s+  [(phi)s  \mvdash{}\mrightarrow{}  (u)s+]  (a0)s)



Date html generated: 2020_05_20-PM-04_48_20
Last ObjectModification: 2020_04_13-PM-09_43_47

Theory : cubical!type!theory


Home Index