Nuprl Lemma : csm-id-fiber-center
∀[G,K:j⊢]. ∀[tau:K j⟶ G]. ∀[A:{G ⊢ _}].
  (id-fiber-center(K;(A)tau) = (id-fiber-center(G;A))tau+ ∈ {K.(A)tau ⊢ _:Fiber((cubical-id-fun(K))p;q)})
Proof
Definitions occuring in Statement : 
id-fiber-center: id-fiber-center(X;T)
, 
cubical-fiber: Fiber(w;a)
, 
cubical-id-fun: cubical-id-fun(X)
, 
csm+: tau+
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
id-fiber-center: id-fiber-center(X;T)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
cubical-type: {X ⊢ _}
, 
cc-snd: q
, 
csm+: tau+
, 
csm-ap-term: (t)s
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
csm-comp: G o F
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
pi2: snd(t)
, 
rev_implies: P 
⇐ Q
, 
csm-id: 1(X)
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-arrow: cat-arrow(C)
, 
type-cat: TypeCat
, 
names-hom: I ⟶ J
, 
cat-comp: cat-comp(C)
, 
compose: f o g
Lemmas referenced : 
csm-cubical-pair, 
cubical-type_wf, 
cube_set_map_wf, 
cubical_set_wf, 
cubical-refl_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
csm-ap-type_wf, 
cubical-type-cumulativity2, 
cc-fst_wf, 
cc-snd_wf, 
cubical-fiber-id-fun, 
csm-cubical-id-fun, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
cubical-fiber_wf, 
cubical-term_wf, 
cubical-fun_wf, 
subtype_rel_self, 
iff_weakening_equal, 
cubical-pair_wf, 
csm-id-adjoin_wf, 
path-type_wf, 
csm-ap-term_wf, 
csm-path-type, 
csm_id_adjoin_fst_type_lemma, 
csm_id_adjoin_fst_term_lemma, 
cc_snd_csm_id_adjoin_lemma, 
csm-ap-id-term, 
csm-cubical-refl, 
csm+_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
universeIsType, 
hypothesisEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
setElimination, 
rename, 
hyp_replacement
Latex:
\mforall{}[G,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  G].  \mforall{}[A:\{G  \mvdash{}  \_\}].    (id-fiber-center(K;(A)tau)  =  (id-fiber-center(G;A))tau+)
Date html generated:
2020_05_20-PM-03_30_50
Last ObjectModification:
2020_04_08-AM-11_48_56
Theory : cubical!type!theory
Home
Index