Nuprl Lemma : csm-id-fiber-center

[G,K:j⊢]. ∀[tau:K j⟶ G]. ∀[A:{G ⊢ _}].
  (id-fiber-center(K;(A)tau) (id-fiber-center(G;A))tau+ ∈ {K.(A)tau ⊢ _:Fiber((cubical-id-fun(K))p;q)})


Proof




Definitions occuring in Statement :  id-fiber-center: id-fiber-center(X;T) cubical-fiber: Fiber(w;a) cubical-id-fun: cubical-id-fun(X) csm+: tau+ cc-snd: q cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T id-fiber-center: id-fiber-center(X;T) subtype_rel: A ⊆B all: x:A. B[x] true: True squash: T prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q implies:  Q cubical-type: {X ⊢ _} cc-snd: q csm+: tau+ csm-ap-term: (t)s cc-fst: p csm-ap-type: (AF)s csm-comp: F csm-adjoin: (s;u) csm-ap: (s)x pi2: snd(t) rev_implies:  Q csm-id: 1(X) cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g
Lemmas referenced :  csm-cubical-pair cubical-type_wf cube_set_map_wf cubical_set_wf cubical-refl_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j csm-ap-type_wf cubical-type-cumulativity2 cc-fst_wf cc-snd_wf cubical-fiber-id-fun csm-cubical-id-fun equal_wf squash_wf true_wf istype-universe cubical-fiber_wf cubical-term_wf cubical-fun_wf subtype_rel_self iff_weakening_equal cubical-pair_wf csm-id-adjoin_wf path-type_wf csm-ap-term_wf csm-path-type csm_id_adjoin_fst_type_lemma csm_id_adjoin_fst_term_lemma cc_snd_csm_id_adjoin_lemma csm-ap-id-term csm-cubical-refl csm+_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis universeIsType hypothesisEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate applyEquality because_Cache dependent_functionElimination natural_numberEquality equalityTransitivity equalitySymmetry lambdaEquality_alt imageElimination universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination setElimination rename hyp_replacement

Latex:
\mforall{}[G,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  G].  \mforall{}[A:\{G  \mvdash{}  \_\}].    (id-fiber-center(K;(A)tau)  =  (id-fiber-center(G;A))tau+)



Date html generated: 2020_05_20-PM-03_30_50
Last ObjectModification: 2020_04_08-AM-11_48_56

Theory : cubical!type!theory


Home Index