Nuprl Lemma : csm-rev-type-line

[G,K:j⊢]. ∀[A:{G.𝕀 ⊢ _}]. ∀[tau:K j⟶ G].  (((A)-)tau+ ((A)tau+)- ∈ {K.𝕀 ⊢ _})


Proof




Definitions occuring in Statement :  rev-type-line: (A)- interval-type: 𝕀 csm+: tau+ cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-ap-type: (AF)s rev-type-line: (A)- cubical-type: {X ⊢ _} cc-snd: q interval-rev: 1-(r) cc-fst: p csm-adjoin: (s;u) csm-ap: (s)x interval-type: 𝕀 csm+: tau+ cubical-term-at: u(a) constant-cubical-type: (X) csm-comp: F pi1: fst(t) pi2: snd(t) compose: g subtype_rel: A ⊆B cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) type-cat: TypeCat all: x:A. B[x] names-hom: I ⟶ J cat-comp: cat-comp(C) uimplies: supposing a cube-context-adjoin: X.A interval-presheaf: 𝕀 and: P ∧ Q I_cube: A(I) DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] prop: guard: {T} so_apply: x[s] cubical_set: CubicalSet ps_context: __⊢
Lemmas referenced :  cubical-type-equal cube-context-adjoin_wf interval-type_wf csm-ap-type_wf rev-type-line_wf csm+_wf_interval subtype_rel_self cube_set_map_wf cubical-type_wf cubical_set_cumulativity-i-j cubical_set_wf I_cube_pair_redex_lemma cube_set_restriction_pair_lemma cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma interval-type-at cat-ob_wf op-cat_wf cube-cat_wf dma-neg_wf dM_wf lattice-point_wf I_cube_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf fset_wf nat_wf names-hom_wf cube-set-restriction_wf pi1_wf_top dM-lift_wf2 pi2_wf csm-ap-restriction interval-type-ap-morph dM-lift-neg functor-ob_wf type-cat_wf small-category-cumulativity-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule hypothesis instantiate extract_by_obid isectElimination hypothesisEquality applyEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType dependent_functionElimination Error :memTop,  dependent_pairEquality_alt functionExtensionality lambdaEquality_alt productEquality cumulativity isectEquality functionIsType productIsType independent_pairEquality hyp_replacement functionEquality universeEquality

Latex:
\mforall{}[G,K:j\mvdash{}].  \mforall{}[A:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[tau:K  j{}\mrightarrow{}  G].    (((A)-)tau+  =  ((A)tau+)-)



Date html generated: 2020_05_20-PM-04_16_49
Last ObjectModification: 2020_04_10-AM-04_48_34

Theory : cubical!type!theory


Home Index