Nuprl Lemma : csm-rev-type-line
∀[G,K:j⊢]. ∀[A:{G.𝕀 ⊢ _}]. ∀[tau:K j⟶ G].  (((A)-)tau+ = ((A)tau+)- ∈ {K.𝕀 ⊢ _})
Proof
Definitions occuring in Statement : 
rev-type-line: (A)-, 
interval-type: 𝕀, 
csm+: tau+, 
cube-context-adjoin: X.A, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cube_set_map: A ⟶ B, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
csm-ap-type: (AF)s, 
rev-type-line: (A)-, 
cubical-type: {X ⊢ _}, 
cc-snd: q, 
interval-rev: 1-(r), 
cc-fst: p, 
csm-adjoin: (s;u), 
csm-ap: (s)x, 
interval-type: 𝕀, 
csm+: tau+, 
cubical-term-at: u(a), 
constant-cubical-type: (X), 
csm-comp: G o F, 
pi1: fst(t), 
pi2: snd(t), 
compose: f o g, 
subtype_rel: A ⊆r B, 
cube_set_map: A ⟶ B, 
psc_map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
cat-ob: cat-ob(C), 
op-cat: op-cat(C), 
spreadn: spread4, 
cube-cat: CubeCat, 
fset: fset(T), 
quotient: x,y:A//B[x; y], 
cat-arrow: cat-arrow(C), 
type-cat: TypeCat, 
all: ∀x:A. B[x], 
names-hom: I ⟶ J, 
cat-comp: cat-comp(C), 
uimplies: b supposing a, 
cube-context-adjoin: X.A, 
interval-presheaf: 𝕀, 
and: P ∧ Q, 
I_cube: A(I), 
DeMorgan-algebra: DeMorganAlgebra, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
cubical_set: CubicalSet, 
ps_context: __⊢
Lemmas referenced : 
cubical-type-equal, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-ap-type_wf, 
rev-type-line_wf, 
csm+_wf_interval, 
subtype_rel_self, 
cube_set_map_wf, 
cubical-type_wf, 
cubical_set_cumulativity-i-j, 
cubical_set_wf, 
I_cube_pair_redex_lemma, 
cube_set_restriction_pair_lemma, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
interval-type-at, 
cat-ob_wf, 
op-cat_wf, 
cube-cat_wf, 
dma-neg_wf, 
dM_wf, 
lattice-point_wf, 
I_cube_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
fset_wf, 
nat_wf, 
names-hom_wf, 
cube-set-restriction_wf, 
pi1_wf_top, 
dM-lift_wf2, 
pi2_wf, 
csm-ap-restriction, 
interval-type-ap-morph, 
dM-lift-neg, 
functor-ob_wf, 
type-cat_wf, 
small-category-cumulativity-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
hypothesis, 
instantiate, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
dependent_functionElimination, 
Error :memTop, 
dependent_pairEquality_alt, 
functionExtensionality, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality, 
functionIsType, 
productIsType, 
independent_pairEquality, 
hyp_replacement, 
functionEquality, 
universeEquality
Latex:
\mforall{}[G,K:j\mvdash{}].  \mforall{}[A:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[tau:K  j{}\mrightarrow{}  G].    (((A)-)tau+  =  ((A)tau+)-)
Date html generated:
2020_05_20-PM-04_16_49
Last ObjectModification:
2020_04_10-AM-04_48_34
Theory : cubical!type!theory
Home
Index