Nuprl Lemma : ctt-arity_wf

[x:CttOp]. (ctt-arity(x) ∈ (ℕ × ℕList)


Proof




Definitions occuring in Statement :  ctt-arity: ctt-arity(x) ctt-op: CttOp list: List nat: uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x]
Definitions unfolded in proof :  not: ¬A false: False assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff prop: uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) subtype_rel: A ⊆B ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] ctt-arity: ctt-arity(x) ctt-op: CttOp member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  ctt-op_wf list_wf ifthenelse_wf nat_wf nil_wf bool_wf btrue_neq_bfalse neg_assert_of_eq_atom assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert ctt-tokens_wf l_member_wf assert_of_eq_atom eqtt_to_assert ctt-opid-arity_wf eq_atom_wf
Rules used in proof :  productEquality cumulativity voidElimination independent_functionElimination instantiate dependent_functionElimination promote_hyp equalityIstype dependent_pairFormation_alt equalitySymmetry equalityTransitivity atomEquality universeIsType setIsType lambdaEquality_alt independent_isectElimination because_Cache applyEquality equalityElimination unionElimination lambdaFormation_alt inhabitedIsType hypothesis tokenEquality closedConclusion hypothesisEquality isectElimination extract_by_obid introduction sqequalRule rename setElimination thin productElimination sqequalHypSubstitution cut isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[x:CttOp].  (ctt-arity(x)  \mmember{}  (\mBbbN{}  \mtimes{}  \mBbbN{})  List)



Date html generated: 2020_05_20-PM-08_19_29
Last ObjectModification: 2020_03_17-AM-10_36_08

Theory : cubical!type!theory


Home Index