Nuprl Lemma : ctt-arity_wf
∀[x:CttOp]. (ctt-arity(x) ∈ (ℕ × ℕ) List)
Proof
Definitions occuring in Statement : 
ctt-arity: ctt-arity(x)
, 
ctt-op: CttOp
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
Definitions unfolded in proof : 
not: ¬A
, 
false: False
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
prop: ℙ
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
ctt-arity: ctt-arity(x)
, 
ctt-op: CttOp
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
ctt-op_wf, 
list_wf, 
ifthenelse_wf, 
nat_wf, 
nil_wf, 
bool_wf, 
btrue_neq_bfalse, 
neg_assert_of_eq_atom, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
ctt-tokens_wf, 
l_member_wf, 
assert_of_eq_atom, 
eqtt_to_assert, 
ctt-opid-arity_wf, 
eq_atom_wf
Rules used in proof : 
productEquality, 
cumulativity, 
voidElimination, 
independent_functionElimination, 
instantiate, 
dependent_functionElimination, 
promote_hyp, 
equalityIstype, 
dependent_pairFormation_alt, 
equalitySymmetry, 
equalityTransitivity, 
atomEquality, 
universeIsType, 
setIsType, 
lambdaEquality_alt, 
independent_isectElimination, 
because_Cache, 
applyEquality, 
equalityElimination, 
unionElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
hypothesis, 
tokenEquality, 
closedConclusion, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
sqequalRule, 
rename, 
setElimination, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[x:CttOp].  (ctt-arity(x)  \mmember{}  (\mBbbN{}  \mtimes{}  \mBbbN{})  List)
Date html generated:
2020_05_20-PM-08_19_29
Last ObjectModification:
2020_03_17-AM-10_36_08
Theory : cubical!type!theory
Home
Index