Nuprl Lemma : ctt-term-meaning-subtype

[X,Y:⊢'''].  cttTerm(X) ⊆cttTerm(Y) supposing sub_cubical_set{i''':l}(Y; X)


Proof




Definitions occuring in Statement :  ctt-term-meaning: cttTerm(X) sub_cubical_set: Y ⊆ X cubical_set: CubicalSet uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B ctt-term-meaning: cttTerm(X) all: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} ctt-level-type: {X ⊢lvl _} eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bfalse: ff not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop:
Lemmas referenced :  ctt-term-meaning_wf sub_cubical_set_wf decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties subset-cubical-type subset-cubical-term istype-cubical-term int_seg_subtype_special int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf cubical-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt sqequalHypSubstitution productElimination thin dependent_pairEquality_alt hypothesisEquality universeIsType extract_by_obid isectElimination hypothesis sqequalRule axiomEquality instantiate isect_memberEquality_alt isectIsTypeImplies inhabitedIsType because_Cache dependent_functionElimination setElimination rename unionElimination cumulativity intEquality independent_isectElimination independent_functionElimination equalityTransitivity equalitySymmetry natural_numberEquality applyEquality hypothesis_subsumption approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination productIsType

Latex:
\mforall{}[X,Y:\mvdash{}'''].    cttTerm(X)  \msubseteq{}r  cttTerm(Y)  supposing  sub\_cubical\_set\{i''':l\}(Y;  X)



Date html generated: 2020_05_20-PM-07_53_46
Last ObjectModification: 2020_05_04-PM-05_42_46

Theory : cubical!type!theory


Home Index